Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

B. Adjoints

Theorem II.22 (Riesz-Fisher Theorem)

Let HHilbert space\( H \) be a Hilbert space and let φfunctionalelement ofHHilbert space* \( φ\in {H}^{*} \). Then there exists a unique yvectorelement ofHHilbert space \( y\in H \) such that φfunctional(xvector)=equalsxvector, yvector \( φ\mathopen{}\left( x\right)\mathclose{}= \mathopen{}\left\langle{}x, y\right\rangle\mathclose{} \) for all xvectorelement ofHHilbert space \( x\in H \). Further, φfunctional=equalsyvector \( \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}= \mathopen{}\left\lVert{}y\right\rVert\mathclose{} \).

Proof. We may assume φfunctionalnot equal to0zero \( φ\neq 0 \). Since φfunctional\( φ \) is continuous, φfunctional1inverse(0zero) \( {φ}^{-1}\mathopen{}\left( 0\right)\mathclose{} \) is a closed proper subspace of HHilbert space\( H \). So, φfunctional1inverse(0zero) \( { {φ}^{-1}\mathopen{}\left( 0\right)\mathclose{} }^{\perp} \) is non-trivial (from Proposition I.61) and there is a non-zero vector yvector0zeroelement of φfunctional1inverse(0zero) \( {y}_{0}\in { {φ}^{-1}\mathopen{}\left( 0\right)\mathclose{} }^{\perp} \). Thus φfunctional(yvector0zero)not equal to0zero \( φ\mathopen{}\left( {y}_{0}\right)\mathclose{}\neq 0 \) (else yvector0zero, yvector0zero=equals0zero \( \mathopen{}\left\langle{}{y}_{0}, {y}_{0}\right\rangle\mathclose{}= 0 \)). For xvectorelement ofHHilbert space \( x\in H \) consider xvector-minus φfunctional(xvector) φfunctional(yvector0zero) timesyvector0zero \( x-\frac{φ\mathopen{}\left( x\right)\mathclose{}}{φ\mathopen{}\left( {y}_{0}\right)\mathclose{}}{y}_{0} \), which belongs to φfunctional1inverse(0zero) \( {φ}^{-1}\mathopen{}\left( 0\right)\mathclose{} \). Since yvector0zeroφfunctional1inverse(0zero) \( {y}_{0}\perp {φ}^{-1}\mathopen{}\left( 0\right)\mathclose{} \), we get that xvector-minus φfunctional(xvector) φfunctional(yvector0zero) timesyvector0zero, yvector0zero=equals0zero \[ \mathopen{}\left\langle{}x-\frac{φ\mathopen{}\left( x\right)\mathclose{}}{φ\mathopen{}\left( {y}_{0}\right)\mathclose{}}{y}_{0}, {y}_{0}\right\rangle\mathclose{}= 0 \] and xvector, yvector0zero=equals φfunctional(xvector) φfunctional(yvector0zero) timesyvector0zero, yvector0zero ; \[ \mathopen{}\left\langle{}x, {y}_{0}\right\rangle\mathclose{}= \frac{φ\mathopen{}\left( x\right)\mathclose{}}{φ\mathopen{}\left( {y}_{0}\right)\mathclose{}}\mathopen{}\left\langle{}{y}_{0}, {y}_{0}\right\rangle\mathclose{} \text{;} \] that is, φfunctional(xvector)=equals φfunctional(yvector0zero) yvector0zero, yvector0zero timesxvector, yvector0zero \( φ\mathopen{}\left( x\right)\mathclose{}= \frac{φ\mathopen{}\left( {y}_{0}\right)\mathclose{}}{\mathopen{}\left\langle{}{y}_{0}, {y}_{0}\right\rangle\mathclose{}}\mathopen{}\left\langle{}x, {y}_{0}\right\rangle\mathclose{} \). So, yvector=equals φfunctional(yvector0zero) ¯ yvector0zero, yvector0zero timesyvector0zero \( y= \frac{\overline{ φ\mathopen{}\left( {y}_{0}\right)\mathclose{} }}{\mathopen{}\left\langle{}{y}_{0}, {y}_{0}\right\rangle\mathclose{}}{y}_{0} \) works.

For uniqueness: if also φfunctional(xvector)=equalsxvector, z \( φ\mathopen{}\left( x\right)\mathclose{}= \mathopen{}\left\langle{}x, z\right\rangle\mathclose{} \), then xvector, yvector-minusz=equals0zero \( \mathopen{}\left\langle{}x, y-z\right\rangle\mathclose{}= 0 \) for all xvectorelement ofHHilbert space \( x\in H \); in particular, yvector-minusz, yvector-minusz=equals0zero \( \mathopen{}\left\langle{}y-z, y-z\right\rangle\mathclose{}= 0 \).

To show φfunctional=equalsyvector \( \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}= \mathopen{}\left\lVert{}y\right\rVert\mathclose{} \), we have |modulusφfunctional(xvector)|modulus=equals|modulusxvector, yvector|modulusless than or equal toxvectortimesyvector \( \mathopen{}\left\lvert{}φ\mathopen{}\left( x\right)\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\mathopen{}\left\langle{}x, y\right\rangle\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). So, yvectorgreater than or equal toφfunctional \( \mathopen{}\left\lVert{}y\right\rVert\mathclose{}\geq \mathopen{}\left\lVert{}φ\right\rVert\mathclose{} \). Also, |modulusφfunctional(yvector)|modulus=equals|modulusyvector, yvector|modulus=equalsyvectortimesyvector \( \mathopen{}\left\lvert{}φ\mathopen{}\left( y\right)\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\mathopen{}\left\langle{}y, y\right\rangle\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lVert{}y\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). So, |modulusφfunctional(yvectoryvector)|modulus=equalsyvector \( \mathopen{}\left\lvert{}φ\mathopen{}\left( \frac{y}{\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}\right)\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). Thus φfunctionalgreater than or equal toyvector \( \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}\geq \mathopen{}\left\lVert{}y\right\rVert\mathclose{} \).

Proposition II.23

Let HHilbert space\( H \) and JHilbert space\( J \) be Hilbert spaces, and let Tlinear mapelement ofbounded linear operators(HHilbert spaceJHilbert space) \( T\in \mathcal{L}\mathopen{}\left( H, J\right)\mathclose{} \). Then there exists Tlinear map*adjointelement ofbounded linear operators(JHilbert spaceHHilbert space) \( T^{*}\in \mathcal{L}\mathopen{}\left( J, H\right)\mathclose{} \) such that Tlinear map(xvector), yvectorJHilbert space=equalsxvector, Tlinear map*(yvector)HHilbert space \( \mathopen{}\left\langle{}T\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}_{J}= \mathopen{}\left\langle{}x, T^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}_{H} \) for all xvectorelement ofHHilbert space \( x\in H \), yvectorelement ofJHilbert space \( y\in J \). Further, Tlinear map*\( T^{*} \) is unique, (Tlinear map*)*=equalsTlinear map \( \mathopen{}\left( T^{*}\right)\mathclose{}^{*}= T \), and Tlinear map*=equalsTlinear map \( \mathopen{}\left\lVert{} T^{*}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}T\right\rVert\mathclose{} \). Tlinear map*\( T^{*} \) is called the adjoint of Tlinear map\( T \).

Proof. Fix yvectorelement ofJHilbert space \( y\in J \) and consider φfunctional:mapsHHilbert spacetoCcomplex numbers \( φ : H \to \mathbb{C} \) defined by φfunctional(xvector)=equalsTlinear map(xvector), yvector \( φ\mathopen{}\left( x\right)\mathclose{}= \mathopen{}\left\langle{}T\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{} \). We have |modulusφfunctional(xvector)|modulusless than or equal toTlinear map(xvector)timesyvectorless than or equal toTlinear maptimesxvectortimesyvector=equals(Tlinear maptimesyvector)timesxvector \( \mathopen{}\left\lvert{}φ\mathopen{}\left( x\right)\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{}= \mathopen{}\left(\mathopen{}\left\lVert{}T\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{}\right)\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \). So, φfunctionalelement ofHHilbert space* \( φ\in H^{*} \) (with φfunctionalless than or equal toTlinear maptimesyvector \( \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \)). Thus we get an implementing vector, call it Tlinear map*(yvector) \( T^{*}\mathopen{}\left( y\right)\mathclose{} \), such that φfunctional(xvector)=equalsxvector, Tlinear map*(yvector) \( φ\mathopen{}\left( x\right)\mathclose{}= \mathopen{}\left\langle{}x, T^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{} \) for all xvector\( x \). Easily, Tlinear map*:mapsJHilbert spacetoHHilbert space \( T^{*} : J \to H \) is linear and Tlinear map*(yvector)=equalsφfunctionalless than or equal toTlinear maptimesyvector \( \mathopen{}\left\lVert{} T^{*}\mathopen{}\left( y\right)\mathclose{}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). So, Tlinear map*element ofbounded linear operators(JHilbert spaceHHilbert space) \( T^{*}\in \mathcal{L}\mathopen{}\left( J, H\right)\mathclose{} \) with Tlinear map*less than or equal toTlinear map \( \mathopen{}\left\lVert{} T^{*}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{} \). At this point it is clear that (Tlinear map*)*=equalsTlinear map \( \mathopen{}\left( T^{*}\right)\mathclose{}^{*}= T \), so we have Tlinear map=equals(Tlinear map*)*less than or equal toTlinear map* \( \mathopen{}\left\lVert{}T\right\rVert\mathclose{}= \mathopen{}\left\lVert{} \mathopen{}\left( T^{*}\right)\mathclose{}^{*}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{} T^{*}\right\rVert\mathclose{} \). Thus Tlinear map*=equalsTlinear map \( \mathopen{}\left\lVert{} T^{*}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}T\right\rVert\mathclose{} \).

Example II.24

The adjoint of a map from Ccomplex numbersninteger\( {\mathbb{C}}^{n} \) to Ccomplex numbersminteger\( {\mathbb{C}}^{m} \) is obtained by taking the conjugate transpose of the representing matrix: Tlinear map=equals(sequence treal numberiintegerjinteger )sequence \( T= \mathopen{}\left( {t}_{ij} \right)\mathclose{} \) to Tlinear map*=equals(sequence treal numberjintegeriinteger ¯complex conjugate )sequence \( T^{*}= \mathopen{}\left( \overline{ {t}_{ji} } \right)\mathclose{} \).

Example II.25

If Tlinear map\( T \) is multiplication by a bounded measurable φbounded measurable function\( φ \) on L2Lebesgue space(Ωmeasure space) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( Ω\right)\mathclose{} \), then Tlinear map*\( T^{*} \) is multiplication by φbounded measurable function¯complex conjugate\( \overline{φ} \) because Tlinear map*(ffunction), ggroup element=equalsffunction, Tlinear map(ggroup element)=equalsintegralΩmeasure spaceffunctiontimesTlinear map(ggroup element)¯complex conjugate=equalsintegralΩmeasure spaceffunctiontimesφbounded measurable functiontimesggroup element¯complex conjugate=equalsintegralΩmeasure space (φbounded measurable function¯complex conjugatetimesffunction)timesggroup element¯complex conjugate =equalsφbounded measurable function¯complex conjugate(ffunction), ggroup element , \[ \mathopen{}\left\langle{} T^{*}\mathopen{}\left( f\right)\mathclose{}, g\right\rangle\mathclose{}= \mathopen{}\left\langle{}f, T\mathopen{}\left( g\right)\mathclose{}\right\rangle\mathclose{}= \int _{Ω}{}f\overline{T\mathopen{}\left( g\right)\mathclose{}}= \int _{Ω}{}f\overline{φg}= \int _{Ω}{} \mathopen{}\left(\overline{φ}f\right)\mathclose{}\overline{g} = \mathopen{}\left\langle{}\overline{φ}\mathopen{}\left( f\right)\mathclose{}, g\right\rangle\mathclose{} \text{,} \] i.e. Tlinear map*(ffunction)=equalsφbounded measurable function¯complex conjugate(ffunction) \( T^{*}\mathopen{}\left( f\right)\mathclose{}= \overline{φ}\mathopen{}\left( f\right)\mathclose{} \).

Example II.26

Let Tlinear map\( T \) be the Volterra operator on L2Lebesgue space([interval0zero, 1one]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \): (Tlinear map(ffunction))(xreal number)=equalsintegral0zeroxreal numberffunction(treal number)dtreal number \( \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}t \). Then Tlinear map*(ffunction), ggroup element=equalsffunction, Tlinear map(ggroup element)=equalsintegral0zero1one ffunction(xreal number)timesTlinear map(ggroup element(xreal number))¯complex conjugate dxreal number=equalsintegral0zero1one ffunction(xreal number)times(integral0zeroxreal numberggroup element(treal number)¯complex conjugatedtreal number) dxreal number=equalsintegral0zero1one integral0zeroxreal number ffunction(xreal number)timesggroup element(treal number)¯complex conjugate dtreal number dxreal number=equalsintegral0zero1one integraltreal number1one ffunction(xreal number)timesggroup element(treal number)¯complex conjugate dxreal number dtreal number=equalsintegral0zero1one integral0zero1one kpiecewise function(xreal numbertreal number)timesffunction(xreal number)timesggroup element(treal number)¯complex conjugate dxreal number dtreal number , \[ \mathopen{}\left\langle{} T^{*}\mathopen{}\left( f\right)\mathclose{}, g\right\rangle\mathclose{}= \mathopen{}\left\langle{}f, T\mathopen{}\left( g\right)\mathclose{}\right\rangle\mathclose{}= \int _{0}^{1}{} f\mathopen{}\left( x\right)\mathclose{}\overline{T\mathopen{}\left( g\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}} \,\mathrm{d}x= \int _{0}^{1}{} f\mathopen{}\left( x\right)\mathclose{}\mathopen{}\left(\int _{0}^{x}{}\overline{g\mathopen{}\left( t\right)\mathclose{}}\,\mathrm{d}t\right)\mathclose{} \,\mathrm{d}x= \int _{0}^{1}{} \int _{0}^{x}{} f\mathopen{}\left( x\right)\mathclose{}\overline{g\mathopen{}\left( t\right)\mathclose{}} \,\mathrm{d}t \,\mathrm{d}x= \int _{0}^{1}{} \int _{t}^{1}{} f\mathopen{}\left( x\right)\mathclose{}\overline{g\mathopen{}\left( t\right)\mathclose{}} \,\mathrm{d}x \,\mathrm{d}t= \int _{0}^{1}{} \int _{0}^{1}{} k\mathopen{}\left( x, t\right)\mathclose{}f\mathopen{}\left( x\right)\mathclose{}\overline{g\mathopen{}\left( t\right)\mathclose{}} \,\mathrm{d}x \,\mathrm{d}t \text{,} \] where kpiecewise function(xreal numbertreal number)=equals{cases1one, treal numberless than or equal toxreal number; 0zero, otherwise.} \[ k\mathopen{}\left( x, t\right)\mathclose{}= \begin{cases}1, & t\leq x; \\ 0, & \text{otherwise.}\end{cases} \] By Fubini's theorem, we get integral0zero1one integral0zero1one kpiecewise function(xreal numbertreal number)timesffunction(xreal number)timesggroup element(treal number)¯complex conjugate dxreal number dtreal number=equalsintegral0zero1one (integraltreal number1oneffunction(xreal number)dxreal number)timesggroup element(treal number)¯complex conjugate dtreal number=equalsTlinear map*(ffunction), ggroup element , \[ \int _{0}^{1}{} \int _{0}^{1}{} k\mathopen{}\left( x, t\right)\mathclose{}f\mathopen{}\left( x\right)\mathclose{}\overline{g\mathopen{}\left( t\right)\mathclose{}} \,\mathrm{d}x \,\mathrm{d}t= \int _{0}^{1}{} \mathopen{}\left(\int _{t}^{1}{}f\mathopen{}\left( x\right)\mathclose{}\,\mathrm{d}x\right)\mathclose{}\overline{g\mathopen{}\left( t\right)\mathclose{}} \,\mathrm{d}t= \mathopen{}\left\langle{} T^{*}\mathopen{}\left( f\right)\mathclose{}, g\right\rangle\mathclose{} \text{,} \] so that (Tlinear map*(ffunction))(xreal number)=equalsintegralxreal number1oneffunction(treal number)dtreal number \( \mathopen{}\left( T^{*}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{x}^{1}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}t \). Notice that for this operator (Tlinear map+plusTlinear map*)(ffunction) \( \mathopen{}\left(T+ T^{*}\right)\mathclose{}\mathopen{}\left( f\right)\mathclose{} \) is a constant function. That is, (Tlinear map+plusTlinear map*)(ffunction)=equalsffunction, 1constant functiontimes1constant function \( \mathopen{}\left(T+ T^{*}\right)\mathclose{}\mathopen{}\left( f\right)\mathclose{}= \mathopen{}\left\langle{}f, \mathbb{1}\right\rangle\mathclose{}\mathbb{1} \), which is the projection of ffunction\( f \) on Ccomplex numberstimes1constant function \( \mathbb{C}\mathbb{1} \).

Example II.27

Recall the sets Eedge set\( E \) and Vvertex set\( V \) and maps iinitial point map,tterminal point map:mapsEedge settoVvertex set \( i\text{,}t : E \to V \) with supsupremumvvertexelement ofVvertex set (#cardinality(iinitial point map1inverse(vvertex))+plus#cardinality(tterminal point map1inverse(vvertex))) <less thaninfinity . \[ \sup_{v\in V}{} \mathopen{}\left({\#}\mathopen{}\left({i}^{-1}\mathopen{}\left( v\right)\mathclose{}\right)\mathclose{}+{\#}\mathopen{}\left({t}^{-1}\mathopen{}\left( v\right)\mathclose{}\right)\mathclose{}\right)\mathclose{} \lt \infty \text{.} \] Get Tlinear map:mapsl2(Vvertex set)tol2(Eedge set) \( T : \mathrm{l}^{0}\mathopen{}\left( V\right)\mathclose{} \to \mathrm{l}^{0}\mathopen{}\left( E\right)\mathclose{} \) defined by (Tlinear map(ffunction))(eedge)=equalsffunction(iinitial point map(eedge))-minusffunction(tterminal point map(eedge)) \( \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( e\right)\mathclose{}= f\mathopen{}\left( i\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}-f\mathopen{}\left( t\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{} \). What is the adjoint Tlinear map*:mapsl2(Eedge set)tol2(Vvertex set) \( T^{*} : \mathrm{l}^{0}\mathopen{}\left( E\right)\mathclose{} \to \mathrm{l}^{0}\mathopen{}\left( V\right)\mathclose{} \)? For γfunctionelement ofl2(Eedge set) \( γ\in \mathrm{l}^{0}\mathopen{}\left( E\right)\mathclose{} \), ffunctionelement ofl2(Vvertex set) \( f\in \mathrm{l}^{0}\mathopen{}\left( V\right)\mathclose{} \), Tlinear map*(γfunction), ffunction=equalsγfunction, Tlinear map(ffunction)=equalssummationeedgeelement ofEedge set γfunction(eedge)times (Tlinear map(ffunction))(eedge) ¯complex conjugate =equalssummationeedgeelement ofEedge set γfunction(eedge)times(ffunction(iinitial point map(eedge))¯complex conjugate-minusffunction(tterminal point map(eedge))¯complex conjugate) =equalssummationvvertexelement ofVvertex setffunction(vvertex)¯complex conjugatetimessummation{seteedge|such thatiinitial point map(eedge)=equalsvvertex}setγfunction(eedge)-minussummationwvectorelement ofVvertex setffunction(wvector)¯complex conjugatetimessummation{seteedge¯complex conjugate|such thattterminal point map(eedge¯complex conjugate)=equalswvector}setγfunction(eedge¯complex conjugate)=equalssummationvvertexelement ofVvertex setffunction(vvertex)¯complex conjugatetimes(summation{seteedge|such thatiinitial point map(eedge)=equalsvvertex}setγfunction(eedge)-minussummation{seteedge¯complex conjugate|such thattterminal point map(eedge¯complex conjugate)=equalsvvertex}setγfunction(eedge¯complex conjugate)) , \[ \mathopen{}\left\langle{} T^{*}\mathopen{}\left( γ\right)\mathclose{}, f\right\rangle\mathclose{}= \mathopen{}\left\langle{}γ, T\mathopen{}\left( f\right)\mathclose{}\right\rangle\mathclose{}= \sum_{e\in E}{} γ\mathopen{}\left( e\right)\mathclose{}\overline{ \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( e\right)\mathclose{} } = \sum_{e\in E}{} γ\mathopen{}\left( e\right)\mathclose{}\mathopen{}\left(\overline{f\mathopen{}\left( i\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}}-\overline{f\mathopen{}\left( t\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}}\right)\mathclose{} = \sum_{v\in V}{}\overline{f\mathopen{}\left( v\right)\mathclose{}}\sum_{\mathopen{}\left\{\, e\,\middle\vert\, i\mathopen{}\left( e\right)\mathclose{}= v\,\right\}\mathclose{}}{}γ\mathopen{}\left( e\right)\mathclose{}-\sum_{w\in V}{}\overline{f\mathopen{}\left( w\right)\mathclose{}}\sum_{\mathopen{}\left\{\, \overline{e}\,\middle\vert\, t\mathopen{}\left( \overline{e}\right)\mathclose{}= w\,\right\}\mathclose{}}{}γ\mathopen{}\left( \overline{e}\right)\mathclose{}= \sum_{v\in V}{}\overline{f\mathopen{}\left( v\right)\mathclose{}}\mathopen{}\left(\sum_{\mathopen{}\left\{\, e\,\middle\vert\, i\mathopen{}\left( e\right)\mathclose{}= v\,\right\}\mathclose{}}{}γ\mathopen{}\left( e\right)\mathclose{}-\sum_{\mathopen{}\left\{\, \overline{e}\,\middle\vert\, t\mathopen{}\left( \overline{e}\right)\mathclose{}= v\,\right\}\mathclose{}}{}γ\mathopen{}\left( \overline{e}\right)\mathclose{}\right)\mathclose{} \text{,} \] whence Tlinear map*(γfunction)(vvertex)=equalssummation{seteedge|such thatiinitial point map(eedge)=equalsvvertex}setγfunction(eedge)-minussummation{seteedge¯complex conjugate|such thattterminal point map(eedge¯complex conjugate)=equalswvector}setγfunction(eedge¯complex conjugate) \( T^{*}\mathopen{}\left( γ\right)\mathclose{}\mathopen{}\left( v\right)\mathclose{}= \sum_{\mathopen{}\left\{\, e\,\middle\vert\, i\mathopen{}\left( e\right)\mathclose{}= v\,\right\}\mathclose{}}{}γ\mathopen{}\left( e\right)\mathclose{}-\sum_{\mathopen{}\left\{\, \overline{e}\,\middle\vert\, t\mathopen{}\left( \overline{e}\right)\mathclose{}= w\,\right\}\mathclose{}}{}γ\mathopen{}\left( \overline{e}\right)\mathclose{} \) (see Figure II.A for an example).

What does Tlinear map*(Tlinear map):mapsl2(Vvertex set)tol2(Vvertex set) \( T^{*}\mathopen{}\left( T\right)\mathclose{} : \mathrm{l}^{0}\mathopen{}\left( V\right)\mathclose{} \to \mathrm{l}^{0}\mathopen{}\left( V\right)\mathclose{} \) do? (Tlinear map*(Tlinear map(ffunction)))(vvertex)=equalssummation{seteedge|such thatiinitial point map(eedge)=equalsvvertex}set(Tlinear map(ffunction))(eedge)-minussummation{seteedge|such thattterminal point map(eedge)=equalsvvertex}set(Tlinear map(ffunction))(eedge)=equalssummation{seteedge|such thatiinitial point map(eedge)=equalsvvertex}set (ffunction(vvertex)-minusffunction(tterminal point map(eedge))) -minussummation{seteedge|such thattterminal point map(eedge)=equalsvvertex}set (ffunction(iinitial point map(eedge))-minusffunction(vvertex)) =equalsffunction(vvertex)times(#cardinality(iinitial point map1inverse(vvertex))+plus#cardinality(tterminal point map1inverse(vvertex))degdegree(vvertex))-minussummationNeighbors wvector of vvertexffunction(wvector) . \[ \mathopen{}\left( T^{*}\mathopen{}\left( T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( v\right)\mathclose{}= \sum_{\mathopen{}\left\{\, e\,\middle\vert\, i\mathopen{}\left( e\right)\mathclose{}= v\,\right\}\mathclose{}}{}\mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( e\right)\mathclose{}-\sum_{\mathopen{}\left\{\, e\,\middle\vert\, t\mathopen{}\left( e\right)\mathclose{}= v\,\right\}\mathclose{}}{}\mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( e\right)\mathclose{}= \sum_{\mathopen{}\left\{\, e\,\middle\vert\, i\mathopen{}\left( e\right)\mathclose{}= v\,\right\}\mathclose{}}{} \mathopen{}\left(f\mathopen{}\left( v\right)\mathclose{}-f\mathopen{}\left( t\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}\right)\mathclose{} -\sum_{\mathopen{}\left\{\, e\,\middle\vert\, t\mathopen{}\left( e\right)\mathclose{}= v\,\right\}\mathclose{}}{} \mathopen{}\left(f\mathopen{}\left( i\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}-f\mathopen{}\left( v\right)\mathclose{}\right)\mathclose{} = f\mathopen{}\left( v\right)\mathclose{}\mathopen{}\left(\underbrace{{\#}\mathopen{}\left({i}^{-1}\mathopen{}\left( v\right)\mathclose{}\right)\mathclose{}+{\#}\mathopen{}\left({t}^{-1}\mathopen{}\left( v\right)\mathclose{}\right)\mathclose{}}_{\mathop{\text{deg}}\mathopen{}\left( v\right)\mathclose{}}\right)\mathclose{}-\sum_{\text{Neighbors w of v}}{}f\mathopen{}\left( w\right)\mathclose{} \text{.} \] Thus Tlinear map*(Tlinear map(ffunction))=equalsDdiagonal operator(ffunction)-minusAself-adjoint operator(ffunction) \( T^{*}\mathopen{}\left( T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}= D\mathopen{}\left( f\right)\mathclose{}-A\mathopen{}\left( f\right)\mathclose{} \) where Ddiagonal operator\( D \) is multiplication by the degree function and Aself-adjoint operator\( A \) is the adjacency operator.

vcomplex number\( v \) eunit vector1one\( {e}_{1} \) eunit vector2two\( {e}_{2} \) eunit vector3three\( {e}_{3} \)
Figure II.A. To illustrate Example II.27, we have Tlinear map*(γmapping)(vcomplex number)=equalsγmapping(eunit vector1one)-minus(γmapping(eunit vector2two)+plusγmapping(eunit vector3three)) \( T^{*}\mathopen{}\left( γ\right)\mathclose{}\mathopen{}\left( v\right)\mathclose{}= γ\mathopen{}\left( {e}_{1}\right)\mathclose{}-\mathopen{}\left(γ\mathopen{}\left( {e}_{2}\right)\mathclose{}+γ\mathopen{}\left( {e}_{3}\right)\mathclose{}\right)\mathclose{} \)
Example II.28

Consider Sshift operator\( S \), the unilateral forward shift on l2(Zintegers+positive elements) \( \mathrm{l}^{0}\mathopen{}\left( {\mathbb{Z}}^{+}\right)\mathclose{} \) defined as Sshift operator(xpositive integer1onexpositive integer2two)=equals(0zero, xpositive integer1one, xpositive integer2two, ) \( S\mathopen{}\left( {x}_{1}, {x}_{2}, \dotsc\right)\mathclose{}= \mathopen{}\left(0, {x}_{1}, {x}_{2}, \dotsc\right)\mathclose{} \). Note that Sshift operator(xvector)=equalsxvector \( \mathopen{}\left\lVert{}S\mathopen{}\left( \mathbf{x}\right)\mathclose{}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}\mathbf{x}\right\rVert\mathclose{} \), so Sshift operator\( S \) is bounded. Sshift operator*(xvector), yvector=equalsxvector, Sshift operator*(yvector)=equals(xpositive integer1one, xpositive integer2two, ), (0zero, ypositive integer1one, ypositive integer2two, )=equalssummationninteger=1oneinfinity ypositive integerninteger¯complex conjugatetimesxpositive integerninteger+plus1one =equals(xpositive integer2two, xpositive integer3three, ), (ypositive integer1one, ypositive integer2two, ) . \[ \mathopen{}\left\langle{} S^{*}\mathopen{}\left( \mathbf{x}\right)\mathclose{}, \mathbf{y}\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathbf{x}, S^{*}\mathopen{}\left( \mathbf{y}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left({x}_{1}, {x}_{2}, \dotsc\right)\mathclose{}, \mathopen{}\left(0, {y}_{1}, {y}_{2}, \dotsc\right)\mathclose{}\right\rangle\mathclose{}= \sum_{n=1}^{\infty}{} \overline{{y}_{n}}{x}_{n+1} = \mathopen{}\left\langle{}\mathopen{}\left({x}_{2}, {x}_{3}, \dotsc\right)\mathclose{}, \mathopen{}\left({y}_{1}, {y}_{2}, \dotsc\right)\mathclose{}\right\rangle\mathclose{} \text{.} \] Thus Sshift operator*(xvector)=equals(xpositive integer2two, xpositive integer3three, ) \( S^{*}\mathopen{}\left( \mathbf{x}\right)\mathclose{}= \mathopen{}\left({x}_{2}, {x}_{3}, \dotsc\right)\mathclose{} \) (backwards shift). Sshift operator*(Sshift operator)=equalsI \( S^{*}\mathopen{}\left( S\right)\mathclose{}= I \), but Sshift operator(Sshift operator*(xvector))=equals(0zero, xpositive integer2two, )=equalsI-minusPprojection1onenot equal toI , \[ S\mathopen{}\left( S^{*}\mathopen{}\left( \mathbf{x}\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left(0, {x}_{2}, \dotsc\right)\mathclose{}= I-{P}_{1}\neq I \text{,} \] where Pprojection1one\( {P}_{1} \) is the projection on the first entry ( Pprojection1one(xvector)=equals(xpositive integer1one, 0zero, ) \( {P}_{1}\mathopen{}\left( \mathbf{x}\right)\mathclose{}= \mathopen{}\left({x}_{1}, 0, \dotsc\right)\mathclose{} \)).


Previous: Two Basic Theorems back to top Next: Invertible Operators