Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

II. Bounded Operators

Definition II.1

A linear map Tlinear map:mapsXnormed linear spacetoYnormed linear space \( T : X \to Y \) between normed linear spaces is called bounded if there exists an rpositive real number>greater than0zero \( r\gt 0 \) such that Tlinear map(xvector)less than or equal torpositive real numbertimesTlinear map \( \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq r\mathopen{}\left\lVert{}T\right\rVert\mathclose{} \) for all xvectorelement ofXnormed linear space \( x\in X \).

Proposition II.2

For a linear map Tlinear map:mapsXnormed linear spacetoYnormed linear space \( T : X \to Y \), the following are equivalent.

(a)
Tlinear map\( T \) is continuous.
(b)
Tlinear map\( T \) is continuous at 0zeroelement ofXnormed linear space\( 0\in X \).
(c)
supsupremumxvectorless than or equal to1oneTlinear map(xvector)<less thaninfinity \( \sup_{\mathopen{}\left\lVert{}x\right\rVert\mathclose{}\leq 1}{}\mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\lt \infty \).
(d)
supsupremumxvector=equals1oneTlinear map(xvector)<less thaninfinity \( \sup_{\mathopen{}\left\lVert{}x\right\rVert\mathclose{}= 1}{}\mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\lt \infty \).
(e)
Tlinear map\( T \) is bounded.

Proof.

  1. ((b) ⇒ (c)) There exists a δpositive real number>greater than0zero \( δ\gt 0 \) such that Tlinear map(xvector)<less than1one \( \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\lt 1 \) for all xvector<less thanδpositive real number \( \mathopen{}\left\lVert{}x\right\rVert\mathclose{}\lt δ \). So for any yvector\( y \) with yvectorless than or equal to1one \( \mathopen{}\left\lVert{}y\right\rVert\mathclose{}\leq 1 \) we have δpositive real number2twotimesyvectorless than or equal toδpositive real number2two<less thanδpositive real number \( \mathopen{}\left\lVert{}\frac{δ}{2}y\right\rVert\mathclose{}\leq \frac{δ}{2}\lt δ \), and thus Tlinear map(δpositive real number2twotimesyvector)<less than1one \( \mathopen{}\left\lVert{}T\mathopen{}\left( \frac{δ}{2}y\right)\mathclose{}\right\rVert\mathclose{}\lt 1 \). This makes Tlinear map(yvector)<less than2twoδpositive real number \( \mathopen{}\left\lVert{}T\mathopen{}\left( y\right)\mathclose{}\right\rVert\mathclose{}\lt \frac{2}{δ} \) whenever yvectorless than or equal to1one \( \mathopen{}\left\lVert{}y\right\rVert\mathclose{}\leq 1 \).
  2. ((d) ⇒ (e)) For xvectornot equal to0zero \( x\neq 0 \), Tlinear map( xvectorxvector )less than or equal torreal number \( \mathopen{}\left\lVert{}T\mathopen{}\left( \frac{x}{\mathopen{}\left\lVert{}x\right\rVert\mathclose{}}\right)\mathclose{}\right\rVert\mathclose{}\leq r \) (where rreal number\( r \) is the supremum on the unit sphere) implies Tlinear map(xvector)less than or equal torreal numbertimesxvector \( \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq r\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \).
  3. ((e)⇒(a)) Tlinear map(xvector)-minusTlinear map(xvectorninteger)=equalsTlinear map(xvector-minusxvectorninteger)less than or equal torreal numbertimesxvector-minusxvectorninteger \( \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}-T\mathopen{}\left( {x}_{n}\right)\mathclose{}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}T\mathopen{}\left( x-{x}_{n}\right)\mathclose{}\right\rVert\mathclose{}\leq r\mathopen{}\left\lVert{}x-{x}_{n}\right\rVert\mathclose{} \). So xvectorninteger \( {x}_{n} \) converging to xvector \( x \) makes Tlinear map(xvectorninteger) \( T\mathopen{}\left( {x}_{n}\right)\mathclose{} \) converge to Tlinear map(xvector) \( T\mathopen{}\left( x\right)\mathclose{} \).

Example II.3

Let HHilbert space=equalsL2Lebesgue space(Ωmeasure spaceMmeasure spaceμmeasure) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( Ω, M, μ\right)\mathclose{} \), and let φbounded measurable function:mapsΩmeasure spacetoCcomplex numbers \( φ : Ω \to \mathbb{C} \) be a bounded measurable function on Ωmeasure space\( Ω \). Define Tlinear map:mapsHHilbert spacetoHHilbert space \( T : H \to H \) by Tlinear map(φbounded measurable function)=equalsφbounded measurable functiontimesffunction \( T\mathopen{}\left( φ\right)\mathclose{}= φf \), i.e., (Tlinear map(φbounded measurable function))(treal number)=equalsφbounded measurable function(treal number)timesffunction(treal number) \( \mathopen{}\left(T\mathopen{}\left( φ\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{}= φ\mathopen{}\left( t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{} \). We have Tlinear map(ffunction) 2two =equalsintegralΩmeasure space |modulusφbounded measurable function|modulus 2two times |modulusffunction|modulus 2two less than or equal to (supsupremum|modulusφbounded measurable function|modulus) 2two timesintegralΩmeasure space |modulusffunction|modulus 2two less than or equal to (supsupremum|modulusφbounded measurable function|modulus) 2two timesintegralΩmeasure space ffunction 2two . \[ {\mathopen{}\left\lVert{}T\mathopen{}\left( f\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \int _{Ω}{} {\mathopen{}\left\lvert{}φ\right\rvert\mathclose{}}^{2}{\mathopen{}\left\lvert{}f\right\rvert\mathclose{}}^{2} \leq {\mathopen{}\left(\sup{}\mathopen{}\left\lvert{}φ\right\rvert\mathclose{}\right)\mathclose{}}^{2}\int _{Ω}{} {\mathopen{}\left\lvert{}f\right\rvert\mathclose{}}^{2} \leq {\mathopen{}\left(\sup{}\mathopen{}\left\lvert{}φ\right\rvert\mathclose{}\right)\mathclose{}}^{2}\int _{Ω}{} {\mathopen{}\left\lVert{}f\right\rVert\mathclose{}}^{2} \text{.} \] The operator Tlinear map\( T \) so defined is called a multiplication operator.

Example II.4

Let HHilbert space=equalsL2Lebesgue space([interval0zero, 1one]interval) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) and define Tlinear map:mapsHHilbert spacetoHHilbert space \( T : H \to H \) by (Tlinear map(ffunction))(xvector)=equalsintegral0zeroxvector ffunction(treal number) dtreal number=equalsintegral [interval0zero, xvector]interval ffunction . \[ \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{} f\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t= \int _{ \mathopen{}\left[0, x\right]\mathclose{} }{}f \text{.} \] Note that Tlinear map(ffunction) \( T\mathopen{}\left( f\right)\mathclose{} \) is a well-defined function of xvector \( x \) as L2Lebesgue space([interval0zero, 1one]interval)subsetL1Lebesgue space([interval0zero, 1one]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}\subseteq \mathrm{L}^{\mathrm{1}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \). Furthermore, Tlinear map\( T \) maps L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \) into L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \) in a bounded fashion because |modulus(Tlinear map(ffunction))(xvector)|modulus=equalsffunction, χ [interval0zero, xvector]interval characteristic function of [0, xvector] less than or equal toffunctiontimesχ [interval0zero, xvector]interval characteristic function of [0, xvector] =equalsffunctiontimes xvector 1one2two \( \mathopen{}\left\lvert{}\mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lVert{}\mathopen{}\left\langle{}f, \chi_{ \mathopen{}\left[0, x\right]\mathclose{} }\right\rangle\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}f\right\rVert\mathclose{}\mathopen{}\left\lVert{}\chi_{ \mathopen{}\left[0, x\right]\mathclose{} }\right\rVert\mathclose{}= \mathopen{}\left\lVert{}f\right\rVert\mathclose{}{x}^{\frac{1}{2}} \), and hence Tlinear map(ffunction) 2two =equalsintegral0zero1one |modulusTlinear map(ffunction(xvector))|modulus 2two dxvectorless than or equal to ffunction 2two timesintegral0zero1onexvectordxvector=equals1one2twotimes ffunction 2two , \[ {\mathopen{}\left\lVert{}T\mathopen{}\left( f\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \int _{0}^{1}{} {\mathopen{}\left\lvert{}T\mathopen{}\left( f\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}}^{2} \,\mathrm{d}x\leq {\mathopen{}\left\lVert{}f\right\rVert\mathclose{}}^{2}\int _{0}^{1}{}x\,\mathrm{d}x= \frac{1}{2}{\mathopen{}\left\lVert{}f\right\rVert\mathclose{}}^{2} \text{,} \] so Tlinear map(ffunction)less than or equal to 1one 2two timesffunction \( \mathopen{}\left\lVert{}T\mathopen{}\left( f\right)\mathclose{}\right\rVert\mathclose{}\leq \frac{1}{\sqrt{2}}\mathopen{}\left\lVert{}f\right\rVert\mathclose{} \). This is known as the Volterra Operator.

Example II.5

We next present an example of an unbounded operator. Consider Ddiagonal operator=equalsC1space of continuously differentiable functions([interval0zero, 1one]interval) \( D= \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), the space of continuously differentiable complex functions on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \) with the integral inner product. Define Tlinear map:mapsDdiagonal operatorto L2Lebesgue space([interval0zero, 1one]interval) \( T : D \to \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) by Tlinear map(ffunction)=equalsffunctionderivative \( T\mathopen{}\left( f\right)\mathclose{}= f' \). Note ffunctionderivative \( f' \) is continuous and is therefore in L2Lebesgue space \( \mathrm{L}^{\mathrm{2}} \). To see that Tlinear map \( T \) is not bounded, notice that ffunctionrreal number \( {f}_{r} \) defined by ffunctionrreal number=equals eEuler's constant rreal numbertimestreal number \( {f}_{r}= {\mathrm{e}}^{rt} \) gives Tlinear map(ffunctionrreal number)=equalsrreal numbertimesffunctionrreal number \( T\mathopen{}\left( {f}_{r}\right)\mathclose{}= r{f}_{r} \).

Example II.6

Consider a directed graph with edge set Eedge set \( E \) and vertex set Vvertex set \( V \). Define maps iinitial point map,tterminal point map:mapsEedge settoVvertex set \( i\text{,}t : E \to V \) by letting iinitial point map(eedge) \( i\mathopen{}\left( e\right)\mathclose{} \) be the initial point of edge eedge \( e \) and tterminal point map(eedge) \( t\mathopen{}\left( e\right)\mathclose{} \) the terminal point of edge eedge \( e \). Assume the graph is of bounded degree, i.e., #cardinality iinitial point map1inverse(vvertex) +plus#cardinality tterminal point map1inverse(vvertex) less than or equal toNinteger \( {\#} {i}^{-1}\mathopen{}\left( v\right)\mathclose{} +{\#} {t}^{-1}\mathopen{}\left( v\right)\mathclose{} \leq N \) for all vvertexelement ofVvertex set \( v\in V \) for some positive integer Ninteger \( N \). Define Tlinear map:mapsl2(Vvertex set)tol2(Eedge set) \( T : \mathrm{l}^{0}\mathopen{}\left( V\right)\mathclose{} \to \mathrm{l}^{0}\mathopen{}\left( E\right)\mathclose{} \) by (Tlinear map(ffunction))(eedge)=equalsffunction(iinitial point map(eedge))-minusffunction(tterminal point map(eedge)) \( \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( e\right)\mathclose{}= f\mathopen{}\left( i\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}-f\mathopen{}\left( t\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{} \). We show this goes into l2(Eedge set) \( \mathrm{l}^{0}\mathopen{}\left( E\right)\mathclose{} \) in a bounded fashion: |modulusTlinear map(ffunction)(eedge)|modulus 2two less than or equal to (|modulusffunction(iinitial point map(eedge))|modulus+plus|modulusffunction(tterminal point map(eedge))|modulus) 2two less than or equal to2twotimes( |modulusffunction(iinitial point map(eedge))|modulus 2two +plus |modulusffunction(tterminal point map(eedge))|modulus 2two ) . \[ {\mathopen{}\left\lvert{}T\mathopen{}\left( f\right)\mathclose{}\mathopen{}\left( e\right)\mathclose{}\right\rvert\mathclose{}}^{2}\leq {\mathopen{}\left(\mathopen{}\left\lvert{}f\mathopen{}\left( i\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}+\mathopen{}\left\lvert{}f\mathopen{}\left( t\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}\right)\mathclose{}}^{2}\leq 2\mathopen{}\left({\mathopen{}\left\lvert{}f\mathopen{}\left( i\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}}^{2}+{\mathopen{}\left\lvert{}f\mathopen{}\left( t\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}}^{2}\right)\mathclose{} \text{.} \] Therefore, Tlinear map(ffunction) 2two less than or equal to2twotimessummationeedgeelement ofEedge set ( |modulusffunction(iinitial point map(eedge))|modulus 2two +plus |modulusffunction(tterminal point map(eedge))|modulus 2two ) less than or equal to2twotimesNintegertimessummationvvertexelement ofVvertex set |modulusffunction(vvertex)|modulus 2two . \[ {\mathopen{}\left\lVert{}T\mathopen{}\left( f\right)\mathclose{}\right\rVert\mathclose{}}^{2}\leq 2\sum_{e\in E}{} \mathopen{}\left({\mathopen{}\left\lvert{}f\mathopen{}\left( i\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}}^{2}+{\mathopen{}\left\lvert{}f\mathopen{}\left( t\mathopen{}\left( e\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}}^{2}\right)\mathclose{} \leq 2N\sum_{v\in V}{} {\mathopen{}\left\lvert{}f\mathopen{}\left( v\right)\mathclose{}\right\rvert\mathclose{}}^{2} \text{.} \] i.e. Tlinear map(ffunction)less than or equal to 2twotimesNinteger timesffunction \( \mathopen{}\left\lVert{}T\mathopen{}\left( f\right)\mathclose{}\right\rVert\mathclose{}\leq \sqrt{ 2N }\mathopen{}\left\lVert{}f\right\rVert\mathclose{} \).

Definition II.7

For a bounded linear map Tlinear map:mapsXnormed linear spacetoYnormed linear space \( T : X \to Y \) between normed linear spaces define Tlinear map=equalsinfinfimum {setrreal number>greater than0zero|such that Tlinear map(xvector)less than or equal torreal numbertimesxvector for all(xvectorelement ofXnormed linear space) }set . \[ \mathopen{}\left\lVert{}T\right\rVert\mathclose{}= \inf{} \mathopen{}\left\{\, r\gt 0\,\middle\vert\, , \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq r\mathopen{}\left\lVert{}x\right\rVert\mathclose{}, , \forall{}\mathopen{}\left( x\in X\right)\mathclose{}, \,\right\}\mathclose{} \text{.} \]

Remark II.8

We have Tlinear map(xvector)less than or equal toTlinear maptimesxvector \( \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \) for all xvectorelement ofXnormed linear space \( x\in X \). If we denote by bounded linear operators(Xnormed linear spaceYnormed linear space) \( \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \) the space of bounded linear maps from Xnormed linear space\( X \) to Ynormed linear space\( Y \), · \( \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{} \) so defined is a norm on bounded linear operators(Xnormed linear spaceYnormed linear space) \( \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \). Notice that (Tlinear map1one+plusTlinear map2two)(xvector)less than or equal toTlinear map1one(xvector)+plusTlinear map2two(xvector)less than or equal toTlinear map1onetimesxvector+plusTlinear map2twotimesxvector \[ \mathopen{}\left\lVert{}\mathopen{}\left({T}_{1}+{T}_{2}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}{T}_{1}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}+\mathopen{}\left\lVert{}{T}_{2}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}{T}_{1}\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{}+\mathopen{}\left\lVert{}{T}_{2}\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \] for all xvector\( x \). So, Tlinear map1one+plusTlinear map2twoless than or equal toTlinear map1one+plusTlinear map2two \( \mathopen{}\left\lVert{}{T}_{1}+{T}_{2}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}{T}_{1}\right\rVert\mathclose{}+\mathopen{}\left\lVert{}{T}_{2}\right\rVert\mathclose{} \). Observe that Tlinear map=equalssupsupremum xvectorless than or equal to1one Tlinear map(xvector) =equalssupsupremum xvector=equals1one Tlinear map(xvector) =equalssupsupremum xvectorelement ofXnormed linear spaceset difference{set0zero}set Tlinear map(xvector) xvector . \[ \mathopen{}\left\lVert{}T\right\rVert\mathclose{}= \sup_{ \mathopen{}\left\lVert{}x\right\rVert\mathclose{}\leq 1 }{} \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{} = \sup_{ \mathopen{}\left\lVert{}x\right\rVert\mathclose{}= 1 }{} \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{} = \sup_{ x\in X\setminus \mathopen{}\left\{\, 0\,\right\}\mathclose{} }{} \frac{\mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}}{\mathopen{}\left\lVert{}x\right\rVert\mathclose{}} \text{.} \]

Example II.9

Back to HHilbert space=equalsL2Lebesgue space(Ωmeasure spaceMmeasure spaceμmeasure) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( Ω, M, μ\right)\mathclose{} \), and φbounded measurable function:mapsΩmeasure spacetoCcomplex numbers \( φ : Ω \to \mathbb{C} \) a bounded measurable function on Ωmeasure space\( Ω \). Define L-infinity normφbounded measurable functionL-infinity norm=equalssupsupremum {setrreal numbergreater than or equal to0zero|such that μmeasuretimes{settreal number|such that |modulusφbounded measurable function(treal number)|modulusgreater than or equal torreal number }set>greater than0zero }set . \[ \mathopen{}\left\lVert{}φ\right\rVert_\infty\mathclose{}= \sup{} \mathopen{}\left\{\, r\geq 0\,\middle\vert\, , μ\mathopen{}\left\{\, t\,\middle\vert\, , \mathopen{}\left\lvert{}φ\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}\geq r, \,\right\}\mathclose{}\gt 0, \,\right\}\mathclose{} \text{.} \] This is the essential supremum of |modulusφbounded measurable function|modulus \( \mathopen{}\left\lvert{}φ\right\rvert\mathclose{} \). Note that Tlinear mapless than or equal toφbounded measurable function \( \mathopen{}\left\lVert{}T\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}φ\right\rVert_\infty\mathclose{} \) ( Tlinear map(ffunction)=equalsφbounded measurable function(ffunction) \( T\mathopen{}\left( f\right)\mathclose{}= φ\mathopen{}\left( f\right)\mathclose{} \), Rreal number>greater thanφbounded measurable function \( R\gt \mathopen{}\left\lVert{}φ\right\rVert_\infty\mathclose{} \) implies |modulusφbounded measurable function|modulus<less thanRreal number \( \mathopen{}\left\lvert{}φ\right\rvert\mathclose{}\lt R \) almost everywhere, which gives Tlinear mapless than or equal toRreal number \( \mathopen{}\left\lVert{}T\right\rVert\mathclose{}\leq R \)). For the reverse inequality, we must assume that for every BBanach spaceelement ofMmeasure space \( B\in M \) with μmeasure(BBanach space)=equalsinfinity \( μ\mathopen{}\left( B\right)\mathclose{}= \infty \), there exists Aself-adjoint operatorelement ofMmeasure space \( A\in M \) with Aself-adjoint operatorsubsetBBanach space \( A\subseteq B \) and 0zero<less thanμmeasure(Aself-adjoint operator)<less thaninfinity \( 0\lt μ\mathopen{}\left( A\right)\mathclose{}\lt \infty \). Thus for any 0zero<less thanrreal number<less thanφbounded measurable functioninfinity \( 0\lt r\lt \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}_{\infty} \), we get Aself-adjoint operatorelement ofMmeasure space \( A\in M \) where 0zero<less thanμmeasure(Aself-adjoint operator)<less thaninfinity \( 0\lt μ\mathopen{}\left( A\right)\mathclose{}\lt \infty \) and |modulusφbounded measurable function|modulusgreater than or equal torreal number \( \mathopen{}\left\lvert{}φ\right\rvert\mathclose{}\geq r \) on Aself-adjoint operator\( A \). So, Tlinear map 2two times χAself-adjoint operator 2two greater than or equal to Tlinear map(χAself-adjoint operator) 2two =equals φbounded measurable functiontimesχAself-adjoint operator 2two greater than or equal to rreal number 2two times χAself-adjoint operator 2two , \[ {\mathopen{}\left\lVert{}T\right\rVert\mathclose{}}^{2}{\mathopen{}\left\lVert{}{χ}_{A}\right\rVert\mathclose{}}^{2}\geq {\mathopen{}\left\lVert{}T\mathopen{}\left( {χ}_{A}\right)\mathclose{}\right\rVert\mathclose{}}^{2}= {\mathopen{}\left\lVert{}φ{χ}_{A}\right\rVert\mathclose{}}^{2}\geq {r}^{2}{\mathopen{}\left\lVert{}{χ}_{A}\right\rVert\mathclose{}}^{2} \text{,} \] which gives Tlinear map 2two greater than or equal to rreal number 2two \( {\mathopen{}\left\lVert{}T\right\rVert\mathclose{}}^{2}\geq {r}^{2} \).

Proposition II.10

If Xnormed linear space\( X \) is a normed linear space and YBanach space\( Y \) is a Banach space, then bounded linear operators(Xnormed linear spaceYBanach space) \( \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \) is a Banach space.

Proof. Let (sequence Tlinear mapninteger )sequence \( \mathopen{}\left( {T}_{n} \right)\mathclose{} \) be a Cauchy sequence in bounded linear operators(Xnormed linear spaceYBanach space) \( \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \). For xvectorelement ofXnormed linear space \( x\in X \), the sequence (sequence Tlinear mapninteger(xvector) )sequence \( \mathopen{}\left( {T}_{n}\mathopen{}\left( x\right)\mathclose{} \right)\mathclose{} \) is Cauchy. Hence Tlinear mapninteger(xvector)-minusTlinear mapminteger(xvector)less than or equal toTlinear mapninteger-minusTlinear mapmintegertimesxvector \( \mathopen{}\left\lVert{}{T}_{n}\mathopen{}\left( x\right)\mathclose{}-{T}_{m}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}{T}_{n}-{T}_{m}\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \) and so (sequence Tlinear mapninteger(xvector) )sequence \( \mathopen{}\left( {T}_{n}\mathopen{}\left( x\right)\mathclose{} \right)\mathclose{} \) is convergent in YBanach space\( Y \). Define Tlinear map:mapsXnormed linear spacetoYBanach space \( T : X \to Y \) by Tlinear map(xvector)=equalslimlimitnintegerinfinity Tlinear mapninteger(xvector) \( T\mathopen{}\left( x\right)\mathclose{}= \lim_{n\to\infty}{} {T}_{n}\mathopen{}\left( x\right)\mathclose{} \). Note that Tlinear map\( T \) is plainly linear. We have (Tlinear map-minusTlinear mapninteger)(xvector)less than or equal to(Tlinear map-minusTlinear mapminteger)(xvector)+plus(Tlinear mapminteger-minusTlinear mapninteger)(xvector)less than or equal toTlinear map(xvector)-minusTlinear mapminteger(xvector)+plusTlinear mapminteger-minusTlinear mapnintegertimesxvector \[ \mathopen{}\left\lVert{}\mathopen{}\left(T-{T}_{n}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}\mathopen{}\left(T-{T}_{m}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}+\mathopen{}\left\lVert{}\mathopen{}\left({T}_{m}-{T}_{n}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}-{T}_{m}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}+\mathopen{}\left\lVert{}{T}_{m}-{T}_{n}\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \] for all minteger\( m \) and ninteger\( n \). Take the limit supremum: (Tlinear map-minusTlinear mapninteger)(xvector)less than or equal tolim suplimit supremumminteger Tlinear map(xvector)-minusTlinear mapminteger(xvector) +plus(lim suplimit supremumminteger Tlinear mapminteger-minusTlinear mapninteger )timesxvector=equalslim suplimit supremumminteger Tlinear mapminteger-minusTlinear mapnintegertimesxvector less than or equal to(supsupremum mintegergreater than or equal toninteger Tlinear mapminteger-minusTlinear mapninteger )timesxvector . \[ \mathopen{}\left\lVert{}\mathopen{}\left(T-{T}_{n}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}\leq \limsup_{m}{} \mathopen{}\left\lVert{}T\mathopen{}\left( x\right)\mathclose{}-{T}_{m}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{} +\mathopen{}\left(\limsup_{m}{} \mathopen{}\left\lVert{}{T}_{m}-{T}_{n}\right\rVert\mathclose{} \right)\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{}= \limsup_{m}{} \mathopen{}\left\lVert{}{T}_{m}-{T}_{n}\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \leq \mathopen{}\left(\sup_{ m\geq n }{} \mathopen{}\left\lVert{}{T}_{m}-{T}_{n}\right\rVert\mathclose{} \right)\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \text{.} \] Therefore Tlinear map-minusTlinear mapnintegerless than or equal tosupsupremum mintegergreater than or equal toninteger Tlinear mapminteger-minusTlinear mapninteger \[ \mathopen{}\left\lVert{}T-{T}_{n}\right\rVert\mathclose{}\leq \sup_{ m\geq n }{} \mathopen{}\left\lVert{}{T}_{m}-{T}_{n}\right\rVert\mathclose{} \] and the latter approaches zero as nintegerconverges toinfinity \( n \to \infty \) by the Cauchy property. Thus Tlinear map-minusTlinear mapnintegerelement ofbounded linear operators(Xnormed linear spaceYBanach space) \( T-{T}_{n}\in \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \) (so Tlinear mapelement ofbounded linear operators(Xnormed linear spaceYBanach space) \( T\in \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \)) and Tlinear map-minusTlinear mapnintegerconverges to0zero \( \mathopen{}\left\lVert{}T-{T}_{n}\right\rVert\mathclose{} \to 0 \).

Remark II.11

If Ynormed linear space\( Y \) is complete and Xnormed linear space¯completion\( \overline{X} \) is the completion of Xnormed linear space\( X \), then bounded linear operators(Xnormed linear spaceYnormed linear space)bounded linear operators(Xnormed linear space¯completionYnormed linear space) \( \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{}\simeq \mathcal{L}\mathopen{}\left( \overline{X}, Y\right)\mathclose{} \) (if Tlinear mapelement ofbounded linear operators(Xnormed linear spaceYnormed linear space) \( T\in \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \) and xvectorelement ofXnormed linear space¯completion \( x\in \overline{X} \), we get (sequence xvectorninteger )sequence \( \mathopen{}\left( {x}_{n} \right)\mathclose{} \) in Xnormed linear space\( X \) with xvectornintegerconverges toxvector \( {x}_{n} \to x \) and (sequence Tlinear map(xvectorninteger) )sequence \( \mathopen{}\left( T\mathopen{}\left( {x}_{n}\right)\mathclose{} \right)\mathclose{} \) is Cauchy). Hence limlimitninteger Tlinear map(xvectorninteger) element ofYnormed linear space \( \lim_{n}{} T\mathopen{}\left( {x}_{n}\right)\mathclose{} \in Y \). We write Tlinear map¯completion(xvector)=equalslimlimitninteger Tlinear map(xvectorninteger) \( \overline{T}\mathopen{}\left( x\right)\mathclose{}= \lim_{n}{} T\mathopen{}\left( {x}_{n}\right)\mathclose{} \). If Wnormed linear space\( W \), Xnormed linear space\( X \), and Ynormed linear space\( Y \) are normed linear spaces and Slinear mapselement ofbounded linear operators(Wnormed linear spaceXnormed linear space) \( S\in \mathcal{L}\mathopen{}\left( W, X\right)\mathclose{} \), Tlinear mapelement ofbounded linear operators(Xnormed linear spaceYnormed linear space) \( T\in \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \), then Tlinear maptimesSlinear maps=equalsTlinear mapcompositionSlinear mapselement ofbounded linear operators(Wnormed linear spaceYnormed linear space) \( TS= T\circ S\in \mathcal{L}\mathopen{}\left( W, Y\right)\mathclose{} \) with Tlinear map(Slinear maps)less than or equal toTlinear maptimesSlinear maps \( \mathopen{}\left\lVert{}T\mathopen{}\left( S\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{}\mathopen{}\left\lVert{}S\right\rVert\mathclose{} \).

Definition II.12

Write bounded linear operators(Xnormed linear space)=equalsbounded linear operators(Xnormed linear spaceXnormed linear space) \( \mathcal{L}\mathopen{}\left( X\right)\mathclose{}= \mathcal{L}\mathopen{}\left( X, X\right)\mathclose{} \), which is a normed algebra, i.e, an algebra over Ccomplex numbers\( \mathbb{C} \) equipped with a linear space norm that is furthermore submultiplicative.

Definition II.13

Write Xnormed linear space*dual space=equalsbounded linear operators(Xnormed linear spaceCcomplex numbers) \( {X}^{*}= \mathcal{L}\mathopen{}\left( X, \mathbb{C}\right)\mathclose{} \) for the dual space (or the conjugate space) of Xnormed linear space\( X \). These are the bounded linear functionals on Xnormed linear space\( X \). Xnormed linear space*\( {X}^{*} \) is always a Banach space, with norm φfunction=equalssupsupremum xvectorless than or equal to1one |modulusφfunction|modulus \( \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}= \sup_{ \mathopen{}\left\lVert{}x\right\rVert\mathclose{}\leq 1 }{} \mathopen{}\left\lvert{}φ\right\rvert\mathclose{} \).


Previous: Constructions back to top Next: Two Basic Theorems