Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

A. Completeness

Definition I.28

A function dmetric:mapsSset×Cartesian productSsettoRreal numbers\( d : S\times S \to \mathbb{R} \) is a metric on a set Sset\( S \) if

  1. dmetric(xelementyelement)greater than or equal to0zero\( d\mathopen{}\left( x, y\right)\mathclose{}\geq 0 \);
  2. dmetric(xelementyelement)=equals0zero\( d\mathopen{}\left( x, y\right)\mathclose{}= 0 \) if and only if xelement=equalsyelement\( x= y \);
  3. dmetric(xelementyelement)=equalsdmetric(yelementxelement)\( d\mathopen{}\left( x, y\right)\mathclose{}= d\mathopen{}\left( y, x\right)\mathclose{} \); and
  4. dmetric(xelementzelement)less than or equal todmetric(xelementyelement)+plusdmetric(yelementzelement)\( d\mathopen{}\left( x, z\right)\mathclose{}\leq d\mathopen{}\left( x, y\right)\mathclose{}+d\mathopen{}\left( y, z\right)\mathclose{} \)
for all xelement\( x \), yelement\( y \), and zelement\( z \) in Sset\( S \).

Definition I.29

A set with a metric is a metric space.

Proposition I.30

A normed linear space Xnormed linear space\( X \) is a metric space with metric given by dmetric(xvectoryvector)=equalsxvector-minusyvector \( d\mathopen{}\left( x, y\right)\mathclose{}= \mathopen{}\left\lVert{}x-y\right\rVert\mathclose{} \).

Proof. We prove one condition is satisfied and leave the remaining conditions as Exercise I.31. dmetric(wvectorxvector)+plusdmetric(xvectoryvector)=equalswvector-minusxvector+plusxvector-minusyvectorgreater than or equal to(wvector-minusxvector)+plus(xvector-minusyvector)=equalswvector-minusyvector=equalsdmetric(yvectorwvector) . \[ d\mathopen{}\left( w, x\right)\mathclose{}+d\mathopen{}\left( x, y\right)\mathclose{}= \mathopen{}\left\lVert{}w-x\right\rVert\mathclose{}+\mathopen{}\left\lVert{}x-y\right\rVert\mathclose{}\geq \mathopen{}\left\lVert{}\mathopen{}\left(w-x\right)\mathclose{}+\mathopen{}\left(x-y\right)\mathclose{}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}w-y\right\rVert\mathclose{}= d\mathopen{}\left( y, w\right)\mathclose{} \text{.} \]

Exercise I.31

Complete the proof of Proposition I.30.

Unless otherwise specified, convergence of sequences (and therefore of series) in a normed linear space is with respect to the metric of Proposition I.30, and thus the topology (open sets, closed sets, etc.) comes from the norm.

Definition I.32

A sequence (sequenceαmetric space elementninteger)sequenceninteger=1oneinfinity\( \mathopen{}\left({α}_{n}\right)\mathclose{}_{n=1}^{\infty} \) in a metric space Mmatrix\( M \) with metric dmetric\( d \) is Cauchy if limlimitnintegerinfinity supsupremummintegergreater than or equal tonintegerdmetric(αmetric space elementnintegerαmetric space elementminteger) =equals0zero \( \lim_{n\to\infty}{} \sup_{m\geq n}{}d\mathopen{}\left( {α}_{n}, {α}_{m}\right)\mathclose{} = 0 \).

Definition I.33

A metric space Mmetric space\( M \) is complete if every Cauchy sequence converges to a limit in Mmetric space\( M \).

Proposition I.34

A normed linear space Xnormed linear space\( X \) with norm ·\( \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{} \) is complete if and only if summationninteger=1oneinfinityxvectorninteger \( \sum_{n=1}^{\infty}{}{x}_{n} \) converges in Xnormed linear space\( X \) whenever summationninteger=1oneinfinityxvectorninteger<less thaninfinity \( \sum_{n=1}^{\infty}{}\mathopen{}\left\lVert{}{x}_{n}\right\rVert\mathclose{}\lt \infty \).

Proof. Assume first that Xnormed linear space\( X \) is complete and suppose xvector1one\( {x}_{1} \), xvector2two\( {x}_{2} \), …, are elements of Xnormed linear space\( X \) satisfying summationninteger=1oneinfinityxvectorninteger<less thaninfinity\( \sum_{n=1}^{\infty}{}\mathopen{}\left\lVert{}{x}_{n}\right\rVert\mathclose{}\lt \infty \). Define svectorninteger=equalssummationjinteger=1onenintegerxvectorjinteger\( {s}_{n}= \sum_{j=1}^{n}{}{x}_{j} \). Notice that for minteger>greater thanninteger\( m\gt n \), svectorminteger-minussvectorninteger=equalssummationjinteger=ninteger+plus1onemintegerxvectorjintegerless than or equal tosummationjinteger= ninteger+plus1one minteger xvectorjinteger less than or equal tosummationjinteger= ninteger+plus1one infinity xvectorjinteger , \[ \mathopen{}\left\lVert{}{s}_{m}-{s}_{n}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}\sum_{j=n+1}^{m}{}{x}_{j}\right\rVert\mathclose{}\leq \sum_{j= n+1 }^{ m }{} \mathopen{}\left\lVert{}{x}_{j}\right\rVert\mathclose{} \leq \sum_{j= n+1 }^{ \infty }{} \mathopen{}\left\lVert{}{x}_{j}\right\rVert\mathclose{} \text{,} \] which converges to zero as ninteger\( n \) goes to infinity\( \infty \). So (sequencesvectorninteger)sequenceninteger=1oneinfinity\( \mathopen{}\left({s}_{n}\right)\mathclose{}_{n=1}^{\infty} \) is Cauchy and has a limit, svector\( s \) say, in Xnormed linear space\( X \). Since the sequence of partial sums converges to svector\( s \), summationninteger=1oneinfinityxvectorninteger \( \sum_{n=1}^{\infty}{}{x}_{n} \) converges and its sum is svector\( s \).

Suppose next that summationninteger=1oneinfinityxvectorninteger<less thaninfinity \( \sum_{n=1}^{\infty}{}\mathopen{}\left\lVert{}{x}_{n}\right\rVert\mathclose{}\lt \infty \) implies summationninteger=1oneinfinityxvectorninteger \( \sum_{n=1}^{\infty}{}{x}_{n} \) converges in Xnormed linear space\( X \) for any sequence (sequencexvectorninteger)sequenceninteger=1oneinfinity \( \mathopen{}\left({x}_{n}\right)\mathclose{}_{n=1}^{\infty} \) with elements in Xnormed linear space\( X \). Let (sequenceyvectorkpositive integer)sequencekpositive integer=1oneinfinity \( \mathopen{}\left({y}_{k}\right)\mathclose{}_{k=1}^{\infty} \) be a Cauchy sequence in Xnormed linear space\( X \). Because (sequenceyvectorkpositive integer)sequencekpositive integer=1oneinfinity \( \mathopen{}\left({y}_{k}\right)\mathclose{}_{k=1}^{\infty} \) is Cauchy, there exists a strictly increasing sequence (sequencekpositive integerninteger)sequenceninteger=1oneinfinity \( \mathopen{}\left({k}_{n}\right)\mathclose{}_{n=1}^{\infty} \) of positive integers such that yvectorkpositive integerninteger-minusyvectorkpositive integerninteger+plus1one<less than1one2twoninteger \( \mathopen{}\left\lVert{}{y}_{{k}_{n}}-{y}_{{k}_{n+1}}\right\rVert\mathclose{}\lt \frac{1}{{2}^{n}} \) for each ninteger\( n \). For each ninteger\( n \), let xvectorninteger=equalsyvectorkpositive integerninteger-minusyvectorkpositive integerninteger+plus1one \( {x}_{n}= {y}_{{k}_{n}}-{y}_{{k}_{n+1}} \). Thus summationninteger=1oneinfinity xvectorninteger<less thaninfinity \( \sum_{n=1}^{\infty}{} \mathopen{}\left\lVert{}{x}_{n}\right\rVert\mathclose{}\lt \infty \) and, by assumption, summationninteger=1oneinfinityxvectorninteger\( \sum_{n=1}^{\infty}{}{x}_{n} \) converges in Xnormed linear space\( X \). The partial sums of summationninteger=1oneinfinityxvectorninteger\( \sum_{n=1}^{\infty}{}{x}_{n} \) telescope: (yvectorkpositive integer1one-minusyvectorkpositive integer2two)+plus+plus(yvectorkpositive integerninteger-minus1one-minusyvectorkpositive integerninteger)=equalsyvectorkpositive integer1one-minusyvectorkpositive integerninteger .\[ \mathopen{}\left({y}_{{k}_{1}}-{y}_{{k}_{2}}\right)\mathclose{}+\dotsb+\mathopen{}\left({y}_{{k}_{n-1}}-{y}_{{k}_{n}}\right)\mathclose{}= {y}_{{k}_{1}}-{y}_{{k}_{n}} \text{.} \] So (sequenceyvectorkpositive integerninteger)sequenceninteger=1oneinfinity \( \mathopen{}\left({y}_{{k}_{n}}\right)\mathclose{}_{n=1}^{\infty} \) converges. Because a Cauchy sequence with a convergent subsequence converges, the original sequence (sequenceyvectorkpositive integer)sequencekpositive integer=1oneinfinity \( \mathopen{}\left({y}_{k}\right)\mathclose{}_{k=1}^{\infty} \) converges.

Definition I.35

A complete normed linear space is called a Banach space.

Exercise I.36

Prove that any finite dimensional normed linear space is a Banach space.

Exercise I.37

Prove that the space of continuous functions on a compact metric space is a Banach space using the supremum norm.

Definition I.38

A complete inner product space is called a Hilbert space.

Recall (an excellent reference for rudiments of measure theory is chapter 11 of Rudin's Principles [10], also known as the blue Rudin) for a measure space (tupleΩmeasure space, μmeasure)tuple\( \mathopen{}\left(Ω, μ\right)\mathclose{} \) and a non-negative measurable function gnon-negative measurable function:mapsΩmeasure spaceto[interval0zero, infinity]interval \( g : Ω \to \mathopen{}\left[0, \infty\right]\mathclose{} \), the integral integralΩmeasure spacegnon-negative measurable functiondμmeasure \( \int _{Ω}{}g\,\mathrm{d}μ \) is a well-defined number in [interval0zero, infinity]interval\( \mathopen{}\left[0, \infty\right]\mathclose{} \) and integration over Ωmeasure space\( Ω \) with respect to μmeasure\( μ \) is well-behaved on non-negative measurable functions. For example, if (sequencegnon-negative measurable functionninteger)sequenceninteger=1oneinfinity \( \mathopen{}\left({g}_{n}\right)\mathclose{}_{n=1}^{\infty} \) is a sequence of nonnegative measurable functions then summationninteger=1oneinfinity integralΩmeasure spacegnon-negative measurable functionnintegerdμmeasure =equalsintegralΩmeasure space summationninteger=1oneinfinitygnon-negative measurable functionninteger dμmeasure. \[ \sum_{n=1}^{\infty}{} \int _{Ω}{}{g}_{n}\,\mathrm{d}μ = \int _{Ω}{} \sum_{n=1}^{\infty}{}{g}_{n} \,\mathrm{d}μ\text{.} \] Also, if hcomplex-valued measurable function\( h \) is a complex-valued measurable function on Ωmeasure space\( Ω \) and integralΩmeasure space|modulushcomplex-valued measurable function|modulusdμmeasure<less thaninfinity \( \int _{Ω}{}{\mathopen{}\left\lvert{}h\right\rvert\mathclose{}}_{}\,\mathrm{d}μ\lt \infty \), then integralΩmeasure spacehcomplex-valued measurable functiondμmeasure \( \int _{Ω}{}{h}_{}\,\mathrm{d}μ \) is well-defined in Ccomplex numbers\( \mathbb{C} \).

Definition I.39

For a measure space (tupleΩmeasure space, μmeasure)tuple\( \mathopen{}\left(Ω, μ\right)\mathclose{} \) and a real number preal number\( p \) with 1oneless than or equal topreal number<less thaninfinity\( 1\leq p\lt \infty \), let Mpreal numberspace of measurable functions(Ωmeasure space)\( \mathrm{M}^{p}\mathopen{}\left( Ω\right)\mathclose{} \) (or just Mpreal numberspace of measurable functions\( \mathrm{M}^{p} \)) be the set of all measurable complex-valued functions ffunction\( f \) on Ωmeasure space\( Ω \) such that integralΩmeasure space|modulusffunction|moduluspreal numberdμmeasure<less thaninfinity . \[ \int _{Ω}{}{\mathopen{}\left\lvert{}f\right\rvert\mathclose{}}^{p}\,\mathrm{d}μ\lt \infty \text{.} \]

Exercise I.40

Prove that M2space of measurable functions\( \mathrm{M}^{\mathrm{2}} \) is a vector space.

Hint

Prove as an intermediate step that for functions ffunction\( f \) and gfunction\( g \) in M2space of measurable functions\( \mathrm{M}^{\mathrm{2}} \), (integralΩmeasure space|modulusffunction+plusgfunction|modulus2twodμmeasure) 1one2two less than or equal to (integralΩmeasure space|modulusffunction|modulus2twodμmeasure) 1one2two +plus (integralΩmeasure space|modulusgfunction|modulus2twodμmeasure) 1one2two . \[ {\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}f+g\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}}\leq {\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}f\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}}+{\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}g\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}} \text{.} \]

Exercise I.41

Show that ffunction, gfunctionM2space of measurable functions=equalsintegralΩmeasure spaceffunctiontimesgfunction¯complex conjugatedμmeasure \[ \mathopen{}\left\langle{}f, g\right\rangle\mathclose{}_{\mathrm{M}^{\mathrm{2}}}= \int _{Ω}{}f\overline{g}\,\mathrm{d}μ \] defines a positive sesquilinear form on M2space of measurable functions\( \mathrm{M}^{\mathrm{2}} \).

Hint

As an intermediate step, as in the proof of Proposition I.3, prove that for functions ffunction\( f \) and gfunction\( g \) in M2space of measurable functions\( \mathrm{M}^{\mathrm{2}} \), (integralΩmeasure space|modulusffunctiontimesgfunction|modulus2twodμmeasure) 1one2two less than or equal to (integralΩmeasure space|modulusffunction|modulus2twodμmeasure) 1one2two times (integralΩmeasure space|modulusgfunction|modulus2twodμmeasure) 1one2two . \[ {\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}fg\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}}\leq {\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}f\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}}{\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}g\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}} \text{.} \]

Definition I.42

Let Nsubspace of null vectors\( N \) be the subspace of null vectors (functions) of M2space of measurable functions\( \mathrm{M}^{\mathrm{2}} \). Define L2Lebesgue space=equalsM2space of measurable functions/Nsubspace of null vectors\( \mathrm{L}^{\mathrm{2}}= \mathrm{M}^{\mathrm{2}}/N \).

The space L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \) thus comprises the M2space of measurable functions\( \mathrm{M}^{\mathrm{2}} \) functions modulo agreement almost everywhere.

Theorem I.43

The space L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \) is a Hilbert space with respect to the inner product ffunction, ggroup elementL2Lebesgue space=equalsintegralΩmeasure spaceffunctiontimesggroup element¯complex conjugatedμmeasure . \[ \mathopen{}\left\langle{}f, g\right\rangle\mathclose{}_{\mathrm{L}^{\mathrm{2}}}= \int _{Ω}{}f\overline{g}\,\mathrm{d}μ \text{.} \]

Proof. Take a sequence (sequenceffunctionninteger)sequenceninteger=1oneinfinity \( \mathopen{}\left({f}_{n}\right)\mathclose{}_{n=1}^{\infty} \) of functions in L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \) such that summationninteger=1oneinfinityffunctionnintegerL2Lebesgue space<less thaninfinity \( \sum_{n=1}^{\infty}{}\mathopen{}\left\lVert{}{f}_{n}\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}}\lt \infty \) (note that the norm on L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \) comes from the inner product on L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \) as in Proposition I.21). We may assume that the measure space is σ-finite (that is, a countable union of sets of finite measure), for we may fix function representatives for each ffunctionninteger\( {f}_{n} \) and work in unionninteger,kinteger=1oneinfinity {setxelement of measure space|such that |modulusffunctionninteger(xelement of measure space)|modulusgreater than or equal to1onekinteger }set . \[ \bigcup_{n,k=1}^{\infty}{} \mathopen{}\left\{\, x\,\middle\vert\, , \mathopen{}\left\lvert{}{f}_{n}\mathopen{}\left( x\right)\mathclose{}\right\rvert\mathclose{}\geq \frac{1}{k}, \,\right\}\mathclose{} \text{.} \] For any ggroup elementelement ofL2Lebesgue space\( g\in \mathrm{L}^{\mathrm{2}} \) such that ggroup elementgreater than or equal to0zero\( g\geq 0 \), summationninteger=1oneinfinity integralΩmeasure spaceggroup elementtimes|modulusffunctionninteger|modulusdμmeasure less than or equal tosummationninteger=1oneinfinity ggroup elementL2Lebesgue spacetimesffunctionnintegerL2Lebesgue space . \[ \sum_{n=1}^{\infty}{} \int _{Ω}{}g\mathopen{}\left\lvert{}{f}_{n}\right\rvert\mathclose{}\,\mathrm{d}μ \leq \sum_{n=1}^{\infty}{} \mathopen{}\left\lVert{}g\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}}\mathopen{}\left\lVert{}{f}_{n}\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}} \text{.} \] So, by the monotone convergence theorem, integralΩmeasure space summationninteger=1oneinfinityggroup elementtimes|modulusffunctionninteger|modulus dμmeasure<less thaninfinity. \[ \int _{Ω}{} \sum_{n=1}^{\infty}{}g\mathopen{}\left\lvert{}{f}_{n}\right\rvert\mathclose{} \,\mathrm{d}μ\lt \infty\text{.} \] Thus ggroup elementtimessummationninteger=1oneinfinity|modulusffunctionninteger|modulus<less thaninfinity \( g\sum_{n=1}^{\infty}{}\mathopen{}\left\lvert{}{f}_{n}\right\rvert\mathclose{}\lt \infty \) almost everywhere.

Setting ggroup element=equalsχEconvex setcharacteristic function ofEconvex set\( g= \chi_{E} \) for measurable sets Econvex set\( E \) with finite nonzero measure shows that summationninteger=1oneinfinity|modulusffunctionninteger|modulus<less thaninfinity \( \sum_{n=1}^{\infty}{}\mathopen{}\left\lvert{}{f}_{n}\right\rvert\mathclose{}\lt \infty \) almost everywhere, and thus summationninteger=1oneinfinityffunctionninteger \( \sum_{n=1}^{\infty}{}{f}_{n} \) converges almost everywhere. Let Ssum of functions=equalssummationninteger=1oneinfinityffunctionninteger \( S= \sum_{n=1}^{\infty}{}{f}_{n} \) (defined almost everywhere) and Ssum of functionsminteger=equalssummationninteger=1onemintegerffunctionninteger \( {S}_{m}= \sum_{n=1}^{m}{}{f}_{n} \). Then, using Fatou's Lemma, (integralΩmeasure space|modulusSsum of functions-minusSsum of functionsNinteger|modulus2twodμmeasure) 1one2two =equals (integralΩmeasure spacelimlimitmintegerinfinity|modulusSsum of functionsminteger-minusSsum of functionsNinteger|modulus2twodμmeasure) 1one2two less than or equal tolim inflimit infimummintegerinfinity (integralΩmeasure space|modulusSsum of functionsminteger-minusSsum of functionsNinteger|modulus2twodμmeasure) 1one2two =equalslim inflimit infimummintegerinfinity (integralΩmeasure space|modulussummationninteger=Ninteger+plus1oneminteger|modulusffunctionninteger|modulus|modulus2twodμmeasure) 1one2two less than or equal tolim inflimit infimummintegerinfinity summationninteger=Ninteger+plus1onemintegerffunctionnintegerL2Lebesgue space =equalssummationninteger=Ninteger+plus1oneinfinityffunctionnintegerL2Lebesgue space . \[ {\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}S-{S}_{N}\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}}= {\mathopen{}\left(\int _{Ω}{}\lim_{m\to\infty}{}{\mathopen{}\left\lvert{}{S}_{m}-{S}_{N}\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}}\leq \liminf_{m\to\infty}{} {\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}{S}_{m}-{S}_{N}\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}} = \liminf_{m\to\infty}{} {\mathopen{}\left(\int _{Ω}{}{\mathopen{}\left\lvert{}\sum_{n=N+1}^{m}{}\mathopen{}\left\lvert{}{f}_{n}\right\rvert\mathclose{}\right\rvert\mathclose{}}^{2}\,\mathrm{d}μ\right)\mathclose{}}^{\frac{1}{2}} \leq \liminf_{m\to\infty}{} \sum_{n=N+1}^{m}{}\mathopen{}\left\lVert{}{f}_{n}\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}} = \sum_{n=N+1}^{\infty}{}\mathopen{}\left\lVert{}{f}_{n}\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}} \text{.} \] So Ssum of functions-minusSsum of functionsNintegerL2Lebesgue spaceless than or equal tosummationninteger=1oneinfinityffunctionnintegerL2Lebesgue space \[ \mathopen{}\left\lVert{}S-{S}_{N}\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}}\leq \sum_{n=1}^{\infty}{}\mathopen{}\left\lVert{}{f}_{n}\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}} \] This makes Ssum of functionselement ofL2Lebesgue space\( S\in \mathrm{L}^{\mathrm{2}} \) (because Ssum of functions=equalsSsum of functions-minusSsum of functionsNinteger+plusSsum of functionsNinteger\( S= S-{S}_{N}+{S}_{N} \) ), and limlimitNintegerinfinitySsum of functions-minusSsum of functionsNintegerL2Lebesgue space=equals0zero \( \lim_{N\to\infty}{}\mathopen{}\left\lVert{}S-{S}_{N}\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}}= 0 \) because summationninteger=1oneinfinityffunctionnintegerL2Lebesgue space<less thaninfinity \( \sum_{n=1}^{\infty}{}\mathopen{}\left\lVert{}{f}_{n}\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}}\lt \infty \).

Definition I.44

If Ωmeasure space\( Ω \) is just a set Sset\( S \) and the measure μmeasure\( μ \) on Sset\( S \) is counting measure, then we write l2little l 2(Sset)=equalsL2Lebesgue space(Sset)\( \mathrm{l}^{0}\mathopen{}\left( S\right)\mathclose{}= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( S\right)\mathclose{} \). In this case, l2(Sset)=equals{set ξfunction:mapsSsettoCcomplex numbers |such that summationsset elementSset|modulusξfunction(sset element)|modulus2two<less thaninfinity }set. \[ \mathrm{l}^{0}\mathopen{}\left( S\right)\mathclose{}= \mathopen{}\left\{\, ξ : S \to \mathbb{C} \,\middle\vert\, , \sum_{s\in S}{}{\mathopen{}\left\lvert{}ξ\mathopen{}\left( s\right)\mathclose{}\right\rvert\mathclose{}}^{2}\lt \infty, \,\right\}\mathclose{}\text{.} \] If Sset\( S \) is countably infinite, write l2=equalsl2(Sset)\( \mathrm{l}^{0}= \mathrm{l}^{0}\mathopen{}\left( S\right)\mathclose{} \).

We'll see later that all Hilbert spaces are (isomorphic to) l2(Sset)\( \mathrm{l}^{0}\mathopen{}\left( S\right)\mathclose{} \) for some Sset\( S \). The only thing that matters is the cardinality of Sset\( S \). In fact, we will commonly think of l2\( \mathrm{l}^{0} \) as l2(Nnatural numbers (including zero))\( \mathrm{l}^{0}\mathopen{}\left( \mathbb{N}\right)\mathclose{} \).

The well-known procedure for completing a metric space adapts readily to normed linear spaces, yielding Banach spaces. In the case of an inner product space, we can extend the inner product to the metric completion to obtain a Hilbert space as follows: Start with an inner product space Vinner product space\( V \). Write Sset of all Cauchy sequences\( S \) for the set of all Cauchy sequences in Vinner product space\( V \), which is also a vector space. Define a positive sesquilinear form on Sset of all Cauchy sequences\( S \) by (sequencexvectorninteger)sequenceninteger=1oneinfinity, (sequenceyvectorninteger)sequenceninteger=1oneinfinity=equalslimlimitnintegerinfinity xvectorninteger, yvectorninteger . \[ \mathopen{}\left\langle{}\mathopen{}\left({x}_{n}\right)\mathclose{}_{n=1}^{\infty}, \mathopen{}\left({y}_{n}\right)\mathclose{}_{n=1}^{\infty}\right\rangle\mathclose{}= \lim_{n\to\infty}{} \mathopen{}\left\langle{}{x}_{n}, {y}_{n}\right\rangle\mathclose{} \text{.} \] This works because |modulusxvectorninteger, yvectorninteger-minusxvectorminteger, yvectorminteger|modulusless than or equal to|modulusxvectorninteger, yvectorninteger-minusxvectorminteger, yvectorninteger+plusxvectorminteger, yvectorninteger-minusxvectorminteger, yvectorminteger|modulusless than or equal toxvectorninteger-minusxvectormintegertimesyvectorninteger+plusxvectormintegertimesyvectorninteger-minusyvectorminteger. \[ \mathopen{}\left\lvert{}\mathopen{}\left\langle{}{x}_{n}, {y}_{n}\right\rangle\mathclose{}-\mathopen{}\left\langle{}{x}_{m}, {y}_{m}\right\rangle\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lvert{}\mathopen{}\left\langle{}{x}_{n}, {y}_{n}\right\rangle\mathclose{}-\mathopen{}\left\langle{}{x}_{m}, {y}_{n}\right\rangle\mathclose{}+\mathopen{}\left\langle{}{x}_{m}, {y}_{n}\right\rangle\mathclose{}-\mathopen{}\left\langle{}{x}_{m}, {y}_{m}\right\rangle\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}{x}_{n}-{x}_{m}\right\rVert\mathclose{}\mathopen{}\left\lVert{}{y}_{n}\right\rVert\mathclose{}+\mathopen{}\left\lVert{}{x}_{m}\right\rVert\mathclose{}\mathopen{}\left\lVert{}{y}_{n}-{y}_{m}\right\rVert\mathclose{}\text{.} \] Since the sequences (sequencexvectorninteger)sequenceninteger=1oneinfinity\( \mathopen{}\left({x}_{n}\right)\mathclose{}_{n=1}^{\infty} \) and (sequenceyvectorninteger)sequenceninteger=1oneinfinity\( \mathopen{}\left({y}_{n}\right)\mathclose{}_{n=1}^{\infty} \) are Cauchy, they are bounded, and so xvectorninteger-minusxvectormintegertimesyvectorninteger+plusxvectormintegertimesyvectorninteger-minusyvectormintegerless than or equal toAreal numbertimesxvectorninteger-minusxvectorminteger+plusBreal numbertimesyvectorninteger-minusyvectorminteger \[ \mathopen{}\left\lVert{}{x}_{n}-{x}_{m}\right\rVert\mathclose{}\mathopen{}\left\lVert{}{y}_{n}\right\rVert\mathclose{}+\mathopen{}\left\lVert{}{x}_{m}\right\rVert\mathclose{}\mathopen{}\left\lVert{}{y}_{n}-{y}_{m}\right\rVert\mathclose{}\leq A\mathopen{}\left\lVert{}{x}_{n}-{x}_{m}\right\rVert\mathclose{}+B\mathopen{}\left\lVert{}{y}_{n}-{y}_{m}\right\rVert\mathclose{} \] for some real numbers Areal number\( A \) and Breal number\( B \). Thus the sequence (sequencexvectorninteger, yvectorninteger)sequenceninteger=1oneinfinity\( \mathopen{}\left(\mathopen{}\left\langle{}{x}_{n}, {y}_{n}\right\rangle\mathclose{}\right)\mathclose{}_{n=1}^{\infty} \) is Cauchy. Letting Nset of null vectors\( N \) be the set of null vectors of Sset of all Cauchy sequences\( S \) (in this case those Cauchy sequences that converge to 0zero\( 0 \)), Vinner product space¯completion=equalsSset of all Cauchy sequences/Nset of null vectors\( \overline{V}= S/N \) is the completion of Vinner product space\( V \).


Previous: Hilbert Space back to top Next: Orthogonal Projection