Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

D. Trace-Class/Compact Duality

Proposition III.35

Let Φsesquilinear function:mapsHHilbert space×Cartesian productHHilbert spacetoCcomplex numbers \( Φ : H\times H \to \mathbb{C} \) be sesquilinear (conjugate-bilinear) and suppose there exists Mnonegative real numbergreater than or equal to0zero \( M\geq 0 \) such that |modulusΦsesquilinear function(xvectoryvector)|modulusless than or equal toMnonegative real numbertimesxvectortimesyvector \( \mathopen{}\left\lvert{}Φ\mathopen{}\left( x, y\right)\mathclose{}\right\rvert\mathclose{}\leq M\mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). Then there exists Slinear operatorelement ofbounded linear operators(HHilbert space) \( S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \) such that Φsesquilinear function(xvectoryvector)=equalsSlinear operator(xvector), yvector \( Φ\mathopen{}\left( x, y\right)\mathclose{}= \mathopen{}\left\langle{}S\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{} \).

Proof. For yvectorelement ofHHilbert space \( y\in H \), consider xvectoris mapped toΦsesquilinear function(xvectoryvector) \( x\mapsto Φ\mathopen{}\left( x, y\right)\mathclose{} \). This is a bounded linear functional on HHilbert space\( H \) of norm at most Mnonegative real numbertimesyvector \( M\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). Get Rlinear operator(yvector)element ofHHilbert space \( R\mathopen{}\left( y\right)\mathclose{}\in H \) such that Φsesquilinear function(xvectoryvector)=equalsxvector, Rlinear operator(yvector) \( Φ\mathopen{}\left( x, y\right)\mathclose{}= \mathopen{}\left\langle{}x, R\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{} \) with Rlinear operator(yvector)less than or equal toMnonegative real numbertimesyvector \( \mathopen{}\left\lVert{}R\mathopen{}\left( y\right)\mathclose{}\right\rVert\mathclose{}\leq M\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). By uniqueness of Rlinear operator(yvector) \( R\mathopen{}\left( y\right)\mathclose{} \) for any given yvector\( y \), we get that Rlinear operator:mapsHHilbert spacetoHHilbert space \( R : H \to H \) is linear, so Rlinear operatorelement ofbounded linear operators(HHilbert space) \( R\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \) with Rlinear operatorless than or equal toMnonegative real number \( \mathopen{}\left\lVert{}R\right\rVert\mathclose{}\leq M \). Let Slinear operator=equalsRlinear operator* \( S= R^{*} \).

Proposition III.36

For every φfunctionalelement of𝒦compact linear operators(HHilbert space)* \( φ\in {\mathcal{K}\mathopen{}\left( H\right)\mathclose{}}^{*} \) (the dual space of 𝒦compact linear operators(HHilbert space) \( \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \)), there exists Ttrace-class operatorelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \) such that φfunctional(Kcompact operator)=equalsTrtrace(Ttrace-class operatortimesKcompact operator) \( φ\mathopen{}\left( K\right)\mathclose{}= \operatorname{Tr}\mathopen{}\left( TK\right)\mathclose{} \) for all Kcompact operatorelement of𝒦compact linear operators(HHilbert space) \( K\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \). This Ttrace-class operator\( T \) is unique and φfunctional=equalsTrtrace(|modulusTtrace-class operator|modulus) \( \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}= \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{} \).

Proof. Define Φfunction:mapsHHilbert space×Cartesian productHHilbert spacetoCcomplex numbers \( Φ : H\times H \to \mathbb{C} \) by Φfunction(xvectoryvector)=equalsφfunctional(xvectoryvector) \( Φ\mathopen{}\left( x, y\right)\mathclose{}= φ\mathopen{}\left( x\otimes y\right)\mathclose{} \). Then Φfunction\( Φ \) satisfies the hypothesis of Proposition III.35 because |modulusΦfunction(xvectoryvector)|modulusless than or equal toφfunctionaltimesxvectoryvector=equalsφfunctionaltimesxvectortimesyvector \( \mathopen{}\left\lvert{}Φ\mathopen{}\left( x, y\right)\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\otimes y\right\rVert\mathclose{}= \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). Thus there exists Ttrace-class operatorelement ofbounded linear operators(HHilbert space) \( T\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \) such that φfunctional(xvectoryvector)=equalsTtrace-class operator(xvector), yvector \( φ\mathopen{}\left( x\otimes y\right)\mathclose{}= \mathopen{}\left\langle{}T\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{} \). Let (sequenceeunit vectorninteger)sequenceninteger=1oneinfinity \( \mathopen{}\left({e}_{n}\right)\mathclose{}_{n=1}^{\infty} \) be an orthonormal basis for HHilbert space\( H \). Polarize Ttrace-class operator=equalsVpartial isometrytimes|modulusTtrace-class operator|modulus \( T= V\mathopen{}\left\lvert{}T\right\rvert\mathclose{} \). Let Pprojectionninteger=equalssummationjinteger=1oneninteger eunit vectorjintegereunit vectorjinteger \( {P}_{n}= \sum_{j=1}^{n}{} {e}_{j}\otimes {e}_{j} \) (the projection on spanspan(eunit vector1oneeunit vectorninteger) \( \operatorname{span}\mathopen{}\left( {e}_{1}, \dotsc, {e}_{n}\right)\mathclose{} \)). Then PprojectionnintegertimesVpartial isometry*=equalssummationjinteger=1oneninteger eunit vectorjintegerVpartial isometrytimeseunit vectorjinteger \( {P}_{n} V^{*}= \sum_{j=1}^{n}{} {e}_{j}\otimes V{e}_{j} \), PprojectionnintegertimesVpartial isometry*less than or equal to1one \( \mathopen{}\left\lVert{}{P}_{n} V^{*}\right\rVert\mathclose{}\leq 1 \), and PprojectionnintegertimesVpartial isometry*element of𝒯trace-class operators(HHilbert space) \( {P}_{n} V^{*}\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \). So, φfunctionalgreater than or equal to|modulusφfunctional(PprojectionnintegertimesVpartial isometry*)|modulus=equals|modulusφfunctional(summationjinteger=1oneninteger eunit vectorjintegerVpartial isometry(eunit vectorjinteger) )|modulus=equals|modulussummationjinteger=1oneninteger Ttrace-class operator(eunit vectorjinteger), Vpartial isometry(eunit vectorjinteger) |modulus=equals|modulussummationjinteger=1oneninteger Vpartial isometry(|modulusTtrace-class operator|modulus(eunit vectorjinteger)), Vpartial isometry(eunit vectorjinteger) |modulus=equals|modulussummationjinteger=1oneninteger Vpartial isometry*(Vpartial isometry(|modulusTtrace-class operator|modulus(eunit vectorjinteger))), eunit vectorjinteger |modulus=equalssummationjinteger=1oneninteger |modulusTtrace-class operator|modulus(eunit vectorjinteger), eunit vectorjinteger . \[ \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}\geq \mathopen{}\left\lvert{}φ\mathopen{}\left( {P}_{n} V^{*}\right)\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lvert{}φ\mathopen{}\left( \sum_{j=1}^{n}{} {e}_{j}\otimes V\mathopen{}\left( {e}_{j}\right)\mathclose{} \right)\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\sum_{j=1}^{n}{} \mathopen{}\left\langle{}T\mathopen{}\left( {e}_{j}\right)\mathclose{}, V\mathopen{}\left( {e}_{j}\right)\mathclose{}\right\rangle\mathclose{} \right\rvert\mathclose{}= \mathopen{}\left\lvert{}\sum_{j=1}^{n}{} \mathopen{}\left\langle{}V\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathopen{}\left( {e}_{j}\right)\mathclose{}\right)\mathclose{}, V\mathopen{}\left( {e}_{j}\right)\mathclose{}\right\rangle\mathclose{} \right\rvert\mathclose{}= \mathopen{}\left\lvert{}\sum_{j=1}^{n}{} \mathopen{}\left\langle{} V^{*}\mathopen{}\left( V\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathopen{}\left( {e}_{j}\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}, {e}_{j}\right\rangle\mathclose{} \right\rvert\mathclose{}= \sum_{j=1}^{n}{} \mathopen{}\left\langle{}\mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathopen{}\left( {e}_{j}\right)\mathclose{}, {e}_{j}\right\rangle\mathclose{} \text{.} \] Let ninteger\( n \) approach infinity\( \infty \). We find Ttrace-class operatorelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \) and Trtrace(|modulusTtrace-class operator|modulus)less than or equal toφfunctional \( \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{}\leq \mathopen{}\left\lVert{}φ\right\rVert\mathclose{} \). Next, φfunctional(xvectoryvector)=equalsTrtrace(Ttrace-class operatortimesxvectoryvector) \( φ\mathopen{}\left( x\otimes y\right)\mathclose{}= \operatorname{Tr}\mathopen{}\left( Tx\otimes y\right)\mathclose{} \) for all xvector\( x \) and yvector\( y \). This implies φfunctional(Ffinite-rank operator)=equalsTrtrace(Ttrace-class operatortimesFfinite-rank operator) \( φ\mathopen{}\left( F\right)\mathclose{}= \operatorname{Tr}\mathopen{}\left( TF\right)\mathclose{} \) for all Ffinite-rank operatorelement offinite rank operators(HHilbert space) \( F\in \mathcal{F}\mathopen{}\left( H\right)\mathclose{} \). For general Kcompact operatorelement of𝒦compact linear operators(HHilbert space) \( K\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \), get (sequenceFfinite-rank operatorninteger)sequenceelement offinite rank operators(HHilbert space) \( \mathopen{}\left({F}_{n}\right)\mathclose{}\in \mathcal{F}\mathopen{}\left( H\right)\mathclose{} \) such that Ffinite-rank operatornintegerconverges toKcompact operator \( {F}_{n} \to K \) (in norm). Then φfunctional(Ffinite-rank operatorninteger)converges toφfunctional(Kcompact operator) \( φ\mathopen{}\left( {F}_{n}\right)\mathclose{} \to φ\mathopen{}\left( K\right)\mathclose{} \), and, by Remark III.28, |modulusTrtrace(Ttrace-class operatortimes(Ffinite-rank operatorninteger-minusKcompact operator))|modulusless than or equal toTrtrace(|modulusTtrace-class operator|modulus)timesFfinite-rank operatorninteger-minusKcompact operatorconverges to0zero \( \mathopen{}\left\lvert{}\operatorname{Tr}\mathopen{}\left( T\mathopen{}\left({F}_{n}-K\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}\leq \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{}\mathopen{}\left\lVert{}{F}_{n}-K\right\rVert\mathclose{} \to 0 \), i.e. Trtrace(Ttrace-class operatortimesFfinite-rank operatorninteger)converges toTrtrace(Ttrace-class operatortimesKcompact operator) \( \operatorname{Tr}\mathopen{}\left( T{F}_{n}\right)\mathclose{} \to \operatorname{Tr}\mathopen{}\left( TK\right)\mathclose{} \). So φfunctional(Kcompact operator)=equalsTrtrace(Ttrace-class operatortimesKcompact operator) \( φ\mathopen{}\left( K\right)\mathclose{}= \operatorname{Tr}\mathopen{}\left( TK\right)\mathclose{} \) for all Kcompact operatorelement of𝒦compact linear operators(HHilbert space) \( K\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \). So, |modulusφfunctional(Kcompact operator)|modulus=equals|modulusTrtrace(Ttrace-class operator(Kcompact operator))|modulusless than or equal toTrtrace(|modulusTtrace-class operator|modulus)timesKcompact operator \( \mathopen{}\left\lvert{}φ\mathopen{}\left( K\right)\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\operatorname{Tr}\mathopen{}\left( T\mathopen{}\left( K\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}\leq \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{}\mathopen{}\left\lVert{}K\right\rVert\mathclose{} \) for all Kcompact operator\( K \), and so φfunctionalless than or equal toTrtrace(|modulusTtrace-class operator|modulus) \( \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}\leq \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{} \), and φfunctional=equalsTrtrace(|modulusTtrace-class operator|modulus) \( \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}= \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{} \).

Proposition III.37

Define ·Trtrace \( \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{}_{\operatorname{Tr}} \) on 𝒯trace-class operators(HHilbert space) \( \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \) by Ttrace-class operatorTrtrace=equalsTrtrace(|modulusTtrace-class operator|modulus) \( \mathopen{}\left\lVert{}T\right\rVert\mathclose{}_{\operatorname{Tr}}= \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{} \).

  1. ·Trtrace \( \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{}_{\operatorname{Tr}} \) is a complete norm on 𝒯trace-class operators(HHilbert space) \( \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \).
  2. xvectoryvectorTrtrace=equalsxvectortimesyvector \( \mathopen{}\left\lVert{}x\otimes y\right\rVert\mathclose{}_{\operatorname{Tr}}= \mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \).
  3. With respect to ·Trtrace\( \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{}_{\operatorname{Tr}} \), finite rank operators(HHilbert space) ¯=equals𝒯trace-class operators(HHilbert space) \( \overline{ \mathcal{F}\mathopen{}\left( H\right)\mathclose{} }= \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \).
  4. Ttrace-class operatorless than or equal toTtrace-class operatorTrtrace \( \mathopen{}\left\lVert{}T\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{}_{\operatorname{Tr}} \).
  5. SsettimesTtrace-class operatorTrtraceless than or equal toSsettimesTtrace-class operatorTrtrace \( \mathopen{}\left\lVert{}ST\right\rVert\mathclose{}_{\operatorname{Tr}}\leq \mathopen{}\left\lVert{}S\right\rVert\mathclose{}\mathopen{}\left\lVert{}T\right\rVert\mathclose{}_{\operatorname{Tr}} \) for all Ttrace-class operatorelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \), Ssetelement ofbounded linear operators(HHilbert space) \( S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \).

Proof.

  1. 𝒦compact linear operators(HHilbert space)* \( \mathcal{K}\mathopen{}\left( H\right)\mathclose{}^{*} \), like any dual space, is a Banach space.
  2. We have (xvectoryvector) *times(xvectoryvector)=equals(yvectorxvector)times(xvectoryvector)=equalsxvector, xvectortimesyvectoryvector=equalsxvector2twotimesyvector2twotimesyvectoryvectoryvectoryvector=equalsxvector2twotimesyvector2twotimesPprojection \[ \mathopen{}\left(x\otimes y\right)\mathclose{} ^{*}\mathopen{}\left(x\otimes y\right)\mathclose{}= \mathopen{}\left(y\otimes x\right)\mathclose{}\mathopen{}\left(x\otimes y\right)\mathclose{}= \mathopen{}\left\langle{}x, x\right\rangle\mathclose{}y\otimes y= {\mathopen{}\left\lVert{}x\right\rVert\mathclose{}}^{2}{\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}^{2}\frac{y}{\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}\otimes \frac{y}{\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}= {\mathopen{}\left\lVert{}x\right\rVert\mathclose{}}^{2}{\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}^{2}P \text{} \] where Pprojection\( P \) is the projection on Ccomplex numberstimesyvector\( \mathbb{C}y \). So, |modulusxvectoryvector|modulus=equalsxvectortimesyvectortimesyvectoryvectoryvectoryvector \( \mathopen{}\left\lvert{}x\otimes y\right\rvert\mathclose{}= \mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{}\frac{y}{\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}\otimes \frac{y}{\mathopen{}\left\lVert{}y\right\rVert\mathclose{}} \). Thus Trtrace(xvectoryvector)=equalsxvectortimesyvector \( \operatorname{Tr}\mathopen{}\left( x\otimes y\right)\mathclose{}= \mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \).
  3. Take Ttrace-class operatorelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \). Let (sequenceeunit vectorninteger)sequenceninteger=1oneinfinity \( \mathopen{}\left({e}_{n}\right)\mathclose{}_{n=1}^{\infty} \) be an orthonormal basis diagonalizing |modulusTtrace-class operator|modulus \( \mathopen{}\left\lvert{}T\right\rvert\mathclose{} \). Then |modulusTtrace-class operator|modulus=equalssummation λnonnegative real numbernintegertimeseunit vectornintegereunit vectorninteger \( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}= \sum{} {λ}_{n}{e}_{n}\otimes {e}_{n} \), with λnonnegative real numbernintegergreater than or equal to0zero \( {λ}_{n}\geq 0 \) and summation λnonnegative real numberninteger <less thaninfinity \( \sum{} {λ}_{n} \lt \infty \). Write Pprojectionjinteger=equalssummationninteger=1onejinteger eunit vectornintegereunit vectorninteger \( {P}_{j}= \sum_{n=1}^{j}{} {e}_{n}\otimes {e}_{n} \) (which is the projection on spanspan(eunit vector1oneeunit vector2twoeunit vectorjinteger) \( \operatorname{span}\mathopen{}\left( {e}_{1}, {e}_{2}, \dotsc, {e}_{j}\right)\mathclose{} \)). Then |modulusTtrace-class operator|modulustimes(1one-minusPprojectionjinteger)=equalssummationninteger=jinteger+plus1oneinfinity λnonnegative real numbernintegertimeseunit vectornintegereunit vectorninteger \[ \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathopen{}\left(1-{P}_{j}\right)\mathclose{}= \sum_{n=j+1}^{\infty}{} {λ}_{n}{e}_{n}\otimes {e}_{n} \] so |modulusTtrace-class operator|modulustimes(1one-minusPprojectionjinteger)Trtrace=equalsTrtrace(|modulusTtrace-class operator|modulustimes(1one-minusPprojectionjinteger))=equalssummationninteger=jinteger+plus1oneinfinity λnonnegative real numberninteger converges to0zero \( \mathopen{}\left\lVert{}\mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathopen{}\left(1-{P}_{j}\right)\mathclose{}\right\rVert\mathclose{}_{\operatorname{Tr}}= \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathopen{}\left(1-{P}_{j}\right)\mathclose{}\right)\mathclose{}= \sum_{n=j+1}^{\infty}{} {λ}_{n} \to 0 \). Finally, the polar decomposition Ttrace-class operator=equalsVvector spacetimes|modulusTtrace-class operator|modulus \( T= V\mathopen{}\left\lvert{}T\right\rvert\mathclose{} \) gives Ttrace-class operatortimes(1one-minusPprojectionjinteger)Trtraceless than or equal toVvector spacetimesTrtrace(|modulusTtrace-class operator|modulustimes(1one-minusPprojectionjinteger))converges to0zero . \[ \mathopen{}\left\lVert{}T\mathopen{}\left(1-{P}_{j}\right)\mathclose{}\right\rVert\mathclose{}_{\operatorname{Tr}}\leq \mathopen{}\left\lVert{}V\right\rVert\mathclose{}\operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathopen{}\left(1-{P}_{j}\right)\mathclose{}\right)\mathclose{} \to 0 \text{.} \] Thus Ttrace-class operator-minusTtrace-class operatortimesPprojectionjintegerconverges to0zero \( \mathopen{}\left\lVert{}T-T{P}_{j}\right\rVert\mathclose{} \to 0 \).
  4. Ttrace-class operatorTrtrace=equalsTrtrace(|modulusTtrace-class operator|modulus) \( \mathopen{}\left\lVert{}T\right\rVert\mathclose{}_{\operatorname{Tr}}= \operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{} \), which is the sum of the eigenvalues of Ttrace-class operator\( T \), and is therefore at least ρEuclidean norm(|modulusTtrace-class operator|modulus)\( ρ\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{} \) (equal to the largest eigenvalue of |modulusTtrace-class operator|modulus\( \mathopen{}\left\lvert{}T\right\rvert\mathclose{} \)). Thus Ttrace-class operatorTrtracegreater than or equal toρEuclidean norm(|modulusTtrace-class operator|modulus)=equals|modulusTtrace-class operator|modulus=equals |modulusTtrace-class operator|modulus2two 1one2two =equals Ttrace-class operator*timesTtrace-class operator 1one2two =equalsTtrace-class operator . \[ \mathopen{}\left\lVert{}T\right\rVert\mathclose{}_{\operatorname{Tr}}\geq ρ\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{}= \mathopen{}\left\lVert{}\mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right\rVert\mathclose{}= {\mathopen{}\left\lVert{}{\mathopen{}\left\lvert{}T\right\rvert\mathclose{}}^{2}\right\rVert\mathclose{}}^{\frac{1}{2}}= {\mathopen{}\left\lVert{} T^{*}T\right\rVert\mathclose{}}^{\frac{1}{2}}= \mathopen{}\left\lVert{}T\right\rVert\mathclose{} \text{.} \]
  5. |modulusTrtrace(SsettimesTtrace-class operatortimesKcompact operator)|modulus=equals|modulusTrtrace(Ttrace-class operatortimesKcompact operatortimesSset)|modulusless than or equal toTtrace-class operatorTrtracetimesKcompact operatortimesSsetless than or equal toTtrace-class operatorTrtracetimesSsettimesKcompact operator \( \mathopen{}\left\lvert{}\operatorname{Tr}\mathopen{}\left( STK\right)\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\operatorname{Tr}\mathopen{}\left( TKS\right)\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{}_{\operatorname{Tr}}\mathopen{}\left\lVert{}KS\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}T\right\rVert\mathclose{}_{\operatorname{Tr}}\mathopen{}\left\lVert{}S\right\rVert\mathclose{}\mathopen{}\left\lVert{}K\right\rVert\mathclose{} \) for all Kcompact operatorelement of𝒦compact linear operators(HHilbert space) \( K\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \).

Proposition III.38

For every ffunctionalelement of (𝒯trace-class operators(HHilbert space), ·Trtrace) * \( f\in { \mathopen{}\left(\mathcal{T}\mathopen{}\left( H\right)\mathclose{}, \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{}_{\operatorname{Tr}}\right)\mathclose{} }^{*} \), there exists a unique Sbounded linear operatorelement ofbounded linear operators(HHilbert space) \( S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \) such that ffunctional(Ttrace-class operator)=equalsTrtrace(Sbounded linear operatortimesTtrace-class operator) \( f\mathopen{}\left( T\right)\mathclose{}= \operatorname{Tr}\mathopen{}\left( ST\right)\mathclose{} \) for all Ttrace-class operatorelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \). Furthermore, ffunctional=equalsSbounded linear operator \( \mathopen{}\left\lVert{}f\right\rVert\mathclose{}= \mathopen{}\left\lVert{}S\right\rVert\mathclose{} \).

Proof. Consider the conjugate bilinear (sesquilinear) form (tuplexvector, yvector)tupleis mapped toffunctional(xvectoryvector) \( \mathopen{}\left(x, y\right)\mathclose{}\mapsto f\mathopen{}\left( x\otimes y\right)\mathclose{} \). Since |modulusffunctional(xvectoryvector)|modulusless than or equal toffunctionaltimesxvectoryvectorTrtrace=equalsffunctionaltimesxvectortimesyvector \( \mathopen{}\left\lvert{}f\mathopen{}\left( x\otimes y\right)\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}f\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\otimes y\right\rVert\mathclose{}_{\operatorname{Tr}}= \mathopen{}\left\lVert{}f\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \), by Proposition III.35 there exists Sbounded linear operatorelement ofbounded linear operators(HHilbert space) \( S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \) such that ffunctional(xvectoryvector)=equalsSbounded linear operator(xvector), yvector \( f\mathopen{}\left( x\otimes y\right)\mathclose{}= \mathopen{}\left\langle{}S\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{} \) and Sbounded linear operatorless than or equal toffunctional \( \mathopen{}\left\lVert{}S\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}f\right\rVert\mathclose{} \). Thus ffunctional(xvectoryvector)=equalsTrtrace(Sbounded linear operator(xvectoryvector)) \( f\mathopen{}\left( x\otimes y\right)\mathclose{}= \operatorname{Tr}\mathopen{}\left( S\mathopen{}\left( x\otimes y\right)\mathclose{}\right)\mathclose{} \) for all xvector\( x \) and yvector\( y \) in HHilbert space\( H \). So ffunctional(F)=equalsTrtrace(Sbounded linear operatortimesF) \( f\mathopen{}\left( F\right)\mathclose{}= \operatorname{Tr}\mathopen{}\left( SF\right)\mathclose{} \) for all Felement offinite rank operators(HHilbert space) \( F\in \mathcal{F}\mathopen{}\left( H\right)\mathclose{} \). Then ffunctional(Ttrace-class operator)=equalsTrtrace(Sbounded linear operatortimesTtrace-class operator) \( f\mathopen{}\left( T\right)\mathclose{}= \operatorname{Tr}\mathopen{}\left( ST\right)\mathclose{} \) by Proposition III.37 for all Ttrace-class operatorelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \). Further |modulusTrtrace(Sbounded linear operator(Ttrace-class operator))|modulusless than or equal toSbounded linear operatortimesTrtrace(|modulusTtrace-class operator|modulus) \( \mathopen{}\left\lvert{}\operatorname{Tr}\mathopen{}\left( S\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}S\right\rVert\mathclose{}\operatorname{Tr}\mathopen{}\left( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\right)\mathclose{} \) so ffunctionalless than or equal toSbounded linear operator \( \mathopen{}\left\lVert{}f\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}S\right\rVert\mathclose{} \).

Remark III.39

Thus (bounded linear operators(HHilbert space), ·) (𝒯trace-class operators(HHilbert space), ·Trtrace) * \( \mathopen{}\left(\mathcal{L}\mathopen{}\left( H\right)\mathclose{}, \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{}\right)\mathclose{}\simeq { \mathopen{}\left(\mathcal{T}\mathopen{}\left( H\right)\mathclose{}, \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{}_{\operatorname{Tr}}\right)\mathclose{} }^{*} \), where ·\( \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{} \) is the operator norm. The resulting w* \( \mathop{\mathrm{w}^*} \)-topology is called the ultraweak topology on bounded linear operators(HHilbert space) \( \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \). Sbounded linear operatorαcomplex numberucomplex numberconverges toSbounded linear operator \( {S}_{α} \mathbin{\overset{u}{\to}}S \) if and only if Trtrace(Sbounded linear operatorαcomplex number(Ttrace-class operator))converges toTrtrace(Sbounded linear operator(Ttrace-class operator)) \( \operatorname{Tr}\mathopen{}\left( {S}_{α}\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{} \to \operatorname{Tr}\mathopen{}\left( S\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{} \) for all Ttrace-class operatorelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \) if and only if summationjinteger Sbounded linear operatorαcomplex number(xvectorjinteger), yvectorjinteger converges tosummationjinteger Sbounded linear operatorjinteger, yvectorjinteger \( \sum_{j}{} \mathopen{}\left\langle{}{S}_{α}\mathopen{}\left( {x}_{j}\right)\mathclose{}, {y}_{j}\right\rangle\mathclose{} \to \sum_{j}{} \mathopen{}\left\langle{}{S}_{j}, {y}_{j}\right\rangle\mathclose{} \) for all (sequencexvectorjinteger)sequence \( \mathopen{}\left({x}_{j}\right)\mathclose{} \) and (sequenceyvectorjinteger)sequence \( \mathopen{}\left({y}_{j}\right)\mathclose{} \) in HHilbert space\( H \) with the sum summation xvectorjintegertimesyvectorjinteger <less thaninfinity \( \sum{} \mathopen{}\left\lVert{}{x}_{j}\right\rVert\mathclose{}\mathopen{}\left\lVert{}{y}_{j}\right\rVert\mathclose{} \lt \infty \). If any of these conditions hold, we then have Sbounded linear operatorαcomplex number(xvector), yvectorconverges toSbounded linear operator(xvector), yvector \( \mathopen{}\left\langle{}{S}_{α}\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{} \to \mathopen{}\left\langle{}S\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{} \) (i.e. Sbounded linear operatorαcomplex numberw*converges toSbounded linear operator \( {S}_{α} \mathbin{\overset{\mathop{\mathrm{w}^*}}{\to}}S \); weakly).

Remark III.40

The weak and ultraweak topologies coincide on bounded sets. And, by Alaoglu's Theorem, the unit ball of bounded linear operators(HHilbert space) \( \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \) is ultraweakly compact (hence weakly compact).


Previous: Weak*-Topology back to top Next: Integral Operators