Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

B. Additional Exercises

Exercise IV.44

Let XBanach space=equals{setfcontinuous functionelement ofCspace of continuous functions([interval0zero, 1one]interval)|such that fcontinuous function(1one)=equals0zero }set \( X= \mathopen{}\left\{\, f\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}\,\middle\vert\, , f\mathopen{}\left( 1\right)\mathclose{}= 0, \,\right\}\mathclose{} \), made into a Banach space by endowing it with the uniform norm: fcontinuous function=equalsmaxmaximum {set|modulusfcontinuous function(treal number)|modulus|such that 0zeroless than or equal totreal numberless than or equal to1one }set \( \mathopen{}\left\lVert{}f\right\rVert_\infty\mathclose{}= \max{} \mathopen{}\left\{\, \mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}\,\middle\vert\, , 0\leq t\leq 1, \,\right\}\mathclose{} \). Consider Eclosed subspace=equals{setgcontinuous functionelement ofCspace of continuous functions([interval0zero, 1one]interval)|such that gcontinuous function(1one)=equals0zero integral0zero1onetreal numbertimesgcontinuous function(treal number)dtreal number=equals1one }set. \[ E= \mathopen{}\left\{\, g\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}\,\middle\vert\, , g\mathopen{}\left( 1\right)\mathclose{}= 0, , \int _{0}^{1}{}tg\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}t= 1, \,\right\}\mathclose{}\text{.} \]

(a)  Show that Eclosed subspace\( E \) is a closed convex subset of XBanach space\( X \).

(b)  Find the distance from 0zero\( 0 \) to Eclosed subspace\( E \); that is, find infinfimumgcontinuous functionelement ofEclosed subspacegcontinuous functioninfinity \( \inf_{g\in E}{}\mathopen{}\left\lVert{}g\right\rVert\mathclose{}_{\infty} \).

(c)  Show that there is no nearest point in Eclosed subspace\( E \) to 0zero\( 0 \); that is, show that there is no gcontinuous function\( g \) in Eclosed subspace\( E \) for which gcontinuous functioninfinity=equalsinfinfimumgcontinuous functionelement ofEclosed subspacegcontinuous functioninfinity \( \mathopen{}\left\lVert{}g\right\rVert\mathclose{}_{\infty}= \inf_{g\in E}{}\mathopen{}\left\lVert{}g\right\rVert\mathclose{}_{\infty} \).

Exercise IV.45

Let Xseparable normed linear space\( X \) be a separable normed linear space and let (sequencexvectoriinteger)sequenceiinteger=1oneinfinity \( \mathopen{}\left({x}_{i}\right)\mathclose{}_{i=1}^{\infty} \) be a sequence whose closure is the unit ball of Xseparable normed linear space\( X \). For ffunctional\( f \) and gfunctional\( g \) in Xseparable normed linear space* \( X^{*} \), define d(ffunctionalgfunctional)=equalssummation2twonintegertimes|modulusffunctional(xvectorninteger)-minusgfunctional(xvectorninteger)|modulus \( \operatorname{d}\mathopen{}\left( f, g\right)\mathclose{}= \sum{}{2}^{{-}n}\mathopen{}\left\lvert{}f\mathopen{}\left( {x}_{n}\right)\mathclose{}-g\mathopen{}\left( {x}_{n}\right)\mathclose{}\right\rvert\mathclose{} \). Show that d\( \operatorname{d} \) is a metric on Xseparable normed linear space* \( X^{*} \) and that d\( \operatorname{d} \) gives the w*\( \mathop{\mathrm{w}^*} \) topology on the unit ball of Xseparable normed linear space* \( X^{*} \).

Exercise IV.46

Show that a bounded linear operator on a Hilbert space is compact if and only if it takes bounded weakly convergent nets to norm-convergent nets.

Exercise IV.47

Let TVolterra operator\( T \) be the Volterra operator on HHilbert space=equalsL2Lebesgue space([interval0zero, 1one]interval) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), so (TVolterra operator(fcontinuous function))(xvector)=equalsintegral0zeroxvectorfcontinuous function(treal number)dtreal number \( \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}t \).

(a)  Show that TVolterra operator\( T \) has no eigenvalues.

(b)  Show that σ(TVolterra operator)=equals{set0zero}set \( \mathop{\sigma}\mathopen{}\left( T\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \).

(c)  Prove the integration by parts formula TVolterra operator(ψfunctiontimesTVolterra operator(hfunction))=equalsψfunctiontimesTVolterra operator(hfunction)-minusTVolterra operator(ψfunctiontimeshfunction) \( T\mathopen{}\left( ψ'T\mathopen{}\left( h\right)\mathclose{}\right)\mathclose{}= ψT\mathopen{}\left( h\right)\mathclose{}-T\mathopen{}\left( ψh\right)\mathclose{} \) for ψfunctionelement ofC1space of continuously differentiable functions([interval0zero, 1one]interval) \( ψ\in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) and hfunctionelement ofL2Lebesgue space([interval0zero, 1one]interval) \( h\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \). Advice: C1space of continuously differentiable functions([interval0zero, 1one]interval) \( \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) is dense in L2Lebesgue space([interval0zero, 1one]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \).

(d)  Define φfunctionλcomplex number \( {φ}_{λ} \) for non-zero λcomplex number\( λ \) by φfunctionλcomplex number(xvector)=equals eEuler's constant xvector λcomplex number \( {φ}_{λ}\mathopen{}\left( x\right)\mathclose{}= {\mathrm{e}}^{\frac{{-}x}{λ}} \). Show that (λcomplex number-minusTVolterra operator) 1inverse \( { \mathopen{}\left(λ-T\right)\mathclose{} }^{-1} \) is given on L2Lebesgue space([interval0zero, 1one]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) by the formula (λcomplex number-minusTVolterra operator) 1inverse(fcontinuous function)=equals1oneλcomplex numbertimesfcontinuous function+plus1oneλcomplex number2twotimes1oneφfunctionλcomplex numbertimesTVolterra operator(φfunctionλcomplex numbertimesfcontinuous function). \[ { \mathopen{}\left(λ-T\right)\mathclose{} }^{-1}\mathopen{}\left( f\right)\mathclose{}= \frac{1}{λ}f+\frac{1}{{λ}^{2}}\frac{1}{{φ}_{λ}}T\mathopen{}\left( {φ}_{λ}f\right)\mathclose{}\text{.} \]

Exercise IV.48

Let TVolterra operator\( T \) be the Volterra operator.

(a)  Find an orthonormal basis for HHilbert space\( H \) consisting of eigenvectors for TVolterra operator*timesTVolterra operator \( T^{*}T \).

(b)  Find TVolterra operator \( \mathopen{}\left\lVert{}T\right\rVert\mathclose{} \).

(c)  Calculate Trtrace(TVolterra operator*timesTVolterra operator) \( \operatorname{Tr}\mathopen{}\left( T^{*}T\right)\mathclose{} \) by summing a series. Use summationkinteger=1oneinfinitykinteger2two=equals πpi2two 6six \( \sum_{k=1}^{\infty}{}{k}^{{-}2}= \frac{{\mathrm{\pi}}^{2}}{6} \).

(d)  Write TVolterra operator*timesTVolterra operator \( T^{*}T \) as an integral operator on HHilbert space\( H \) with a continuous kernel, and then use Theorem III.42 to calculate Trtrace(TVolterra operator*timesTVolterra operator) \( \operatorname{Tr}\mathopen{}\left( T^{*}T\right)\mathclose{} \).

(e)  Write a series for |modulusTVolterra operator|modulus \( \mathopen{}\left\lvert{}T\right\rvert\mathclose{} \) that converges in the norm of HHilbert space\( H \) at each fcontinuous functionelement ofHHilbert space \( f\in H \). Express |modulusTVolterra operator|modulus \( \mathopen{}\left\lvert{}T\right\rvert\mathclose{} \) of the constant function 1identity function \( \mathbf{1} \), i.e. |modulusTVolterra operator|modulustimes1identity function \( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathbf{1} \), as the sum of a uniformly convergent trigonometric series. (As a partial check, you should get (|modulusTVolterra operator|modulustimes1identity function)(0zero)=equals8eightπpi2twotimessummationninteger=0zeroinfinity 1oneninteger (2twotimesninteger+plus1one) 2two =equals8eightπpi2twotimesGCatalan's constant \( \mathopen{}\left(\mathopen{}\left\lvert{}T\right\rvert\mathclose{}\mathbf{1}\right)\mathclose{}\mathopen{}\left( 0\right)\mathclose{}= \frac{8}{{\mathrm{\pi}}^{2}}\sum_{n=0}^{\infty}{} \frac{{{-}1}^{n}}{{\mathopen{}\left(2n+1\right)\mathclose{}}^{2}} = \frac{8}{{\mathrm{\pi}}^{2}}G \), where GCatalan's constant\( G \) is Catalan's constant.)

(f)  For fcontinuous functionelement ofHHilbert space \( f\in H \) and αcomplex numberelement ofCcomplex numbersset differenceσ(TVolterra operator*timesTVolterra operator) \( α\in \mathbb{C}\setminus \mathop{\sigma}\mathopen{}\left( T^{*}T\right)\mathclose{} \), let gcontinuous function=equals (1one-minusαcomplex numbertimesTVolterra operator*timesTVolterra operator) 1inversetimesfcontinuous function \( g= { \mathopen{}\left(1-α T^{*}T\right)\mathclose{} }^{-1}f \). (i) Write gcontinuous function\( g \) as the sum of a trigonometric series whose coefficients depend on αcomplex number\( α \) and fcontinuous function\( f \). (ii) Verify that gcontinuous function\( g \) is given by gcontinuous function(treal number)=equalsfcontinuous function(treal number)+plusαcomplex numbertimes( coscosine(αcomplex numbertimestreal number) coscosine(αcomplex number) timesintegral0zero1one sinsine(αcomplex numbertimes(1one-minusθreal number))timesfcontinuous function(θreal number) dθreal number-minusintegral0zerotreal number sinsine(αcomplex numbertimes(treal number-minusθreal number))timesfcontinuous function(θreal number) dθreal number). \[ g\mathopen{}\left( t\right)\mathclose{}= f\mathopen{}\left( t\right)\mathclose{}+\sqrt{α}\mathopen{}\left(\frac{\cos\mathopen{}\left( \sqrt{α}t\right)\mathclose{}}{\cos\mathopen{}\left( \sqrt{α}\right)\mathclose{}}\int _{0}^{1}{} \sin\mathopen{}\left( \sqrt{α}\mathopen{}\left(1-θ\right)\mathclose{}\right)\mathclose{}f\mathopen{}\left( θ\right)\mathclose{} \,\mathrm{d}θ-\int _{0}^{t}{} \sin\mathopen{}\left( \sqrt{α}\mathopen{}\left(t-θ\right)\mathclose{}\right)\mathclose{}f\mathopen{}\left( θ\right)\mathclose{} \,\mathrm{d}θ\right)\mathclose{}\text{.} \]

Advice for (a), (b), (d): This is like the example in Section G, with TVolterra operator*timesTVolterra operator \( T^{*}T \) in place of Koperator\( K \) and the differential operator fcontinuous functionis mapped tofcontinuous functionsecond derivative \( f\mapsto {-}f'' \) with boundary conditions fcontinuous functionderivative(0zero)=equals0zero=equalsfcontinuous function(1one) \( f' \mathopen{}\left( 0\right)\mathclose{}= 0= f\mathopen{}\left( 1\right)\mathclose{} \) in place of Loperator\( L \).

Exercise IV.49

(a)  Let Rring with identity\( R \) be a ring with identity, and let Jproper ideal\( J \) be a proper ideal of Rring with identity\( R \). Show that if xelement of idealelement ofJproper ideal \( x\in J \) and 1one-minusxelement of ideal \( 1-x \) is invertible, then 1one-minus(1one-minusxelement of ideal)1inverse \( 1-{\mathopen{}\left(1-x\right)\mathclose{}}^{-1} \) is invertible. Deduce that if the Hilbert space operator Kcompact operator\( K \) is compact (resp. Hilbert-Schmidt, trace class, finite-dimensional) and 1onenot an element ofσ(Kcompact operator) \( 1\notin \mathop{\sigma}\mathopen{}\left( K\right)\mathclose{} \), then (1one-minusKcompact operator)1inverse-minus1one \( {\mathopen{}\left(1-K\right)\mathclose{}}^{-1}-1 \) is compact (resp. Hilbert-Schmidt, trace class, finite-dimensional).

(b)   In the situation of part (f) of Exercise IV.48, calculate the trace of (1one-minusαcomplex numbertimesToperator*timesToperator) 1inverse-minus1one \( { \mathopen{}\left(1-α T^{*}T\right)\mathclose{} }^{-1}-1 \) as the sum of a series using (i), and in closed form using (ii). (As a check, have Mathematica or the like sum the series exactly.)

Exercise IV.50

Let Soperatorelement ofbounded linear operators(HHilbert space) \( S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \).

(a)  Show that if ηvectorelement ofHHilbert space \( η\in H \) satisfies |modulusξvector, ηvector|modulusless than or equal toMpositive real numbertimesSoperatortimesξvector \( \mathopen{}\left\lvert{}\mathopen{}\left\langle{}ξ, η\right\rangle\mathclose{}\right\rvert\mathclose{}\leq M\mathopen{}\left\lVert{}Sξ\right\rVert\mathclose{} \) for some positive constant Mpositive real number\( M \) and all ξvectorelement ofHHilbert space \( ξ\in H \), then ηvectorelement ofSoperator*timesHHilbert space \( η\in S^{*}H \). (Advice: That ηvectorelement of Soperator*timesHHilbert space ¯ \( η\in \overline{ S^{*}H } \) is easy. If you can get ηvector=equalslimlimitninteger Soperator*timesρvectorninteger \( η= \lim_{n}{} S^{*}{ρ}_{n} \) for a bounded sequence (sequence ρvectorninteger )sequence \( \mathopen{}\left( {ρ}_{n} \right)\mathclose{} \), Alaoglu's Theorem will then close the sale.)

(b)  Suppose that Kerkernel(Soperator)=equals{set0zero}set=equalsKerkernel(Soperator*) \( \operatorname{Ker}\mathopen{}\left( S\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{}= \operatorname{Ker}\mathopen{}\left( S^{*}\right)\mathclose{} \). Define Loperator\( L \) on the dense subspace SoperatortimesHHilbert space \( SH \) by LoperatortimesSoperatortimesξvector=equalsξvector \( LSξ= ξ \). Show that Loperator* \( L^{*} \) has domain Soperator*timesHHilbert space \( S^{*}H \), and is given there by Loperator*timesSoperator*timesξvector=equalsξvector \( L^{*} S^{*}ξ= ξ \). (In particular, the inverse of a bounded self-adjoint operator with kernel {set0zero}set \( \mathopen{}\left\{\, 0\,\right\}\mathclose{} \) is self-adjoint on its natural domain.)

Exercise IV.51

Your mission is to prove the following version of the spectral theorem.

Theorem S: Given a densely defined self-adjoint operator hdensely defined self-adjoint operator\( h \) in the Hilbert space HHilbert space\( H \), there exist a measure space (tupleXmeasure space, Mσ-algebra, μreal number)tuple \( \mathopen{}\left(X, M, μ\right)\mathclose{} \), a measurable function αmeasureable function:mapsXmeasure spaceto (intervalinfinity, infinity)interval \( α : X \to \mathopen{}\left({-}\infty, \infty\right)\mathclose{} \), and a unitary map Uunitary map:mapsHHilbert spaceto L2Lebesgue space(Xmeasure spaceMσ-algebraμreal number) \( U : H \to \mathrm{L}^{\mathrm{2}}\mathopen{}\left( XMμ\right)\mathclose{} \) such that Uunitary map(Ddomain(hdensely defined self-adjoint operator))=equals{setξfunctionelement ofL2Lebesgue space(Xmeasure space)|such that αmeasureable function(ξfunction)element ofL2Lebesgue space(Xmeasure space) }set \( U\mathopen{}\left( \mathop{\mathcal{D}}\mathopen{}\left( h\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left\{\, ξ\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( X\right)\mathclose{}\,\middle\vert\, , α\mathopen{}\left( ξ\right)\mathclose{}\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( X\right)\mathclose{}, \,\right\}\mathclose{} \) and Uunitary map(hdensely defined self-adjoint operator(Uunitary map*(ξfunction)))=equalsαmeasureable functiontimesξfunction \( U\mathopen{}\left( h\mathopen{}\left( U^{*}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= αξ \) for all ξfunctionelement ofUunitary map(Ddomain(hdensely defined self-adjoint operator)) \( ξ\in U\mathopen{}\left( \mathop{\mathcal{D}}\mathopen{}\left( h\right)\mathclose{}\right)\mathclose{} \).

In other words, HHilbert space\( H \) is unitarily equivalent to multiplication by a measurable real function in an L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \)-space.

The proof envisioned here requires an important result from measure theory at a level somewhat beyond the assumed prerequisite knowledge for this course. One of several theorems called the Riesz representation theorem says that if Ωcompact Hausdorff space\( Ω \) is a compact Hausdorff space and Φpositive linear functional:mapsCspace of continuous functions(Ωcompact Hausdorff space)toCcomplex numbers \( Φ : \mathrm{C}\mathopen{}\left( Ω\right)\mathclose{} \to \mathbb{C} \) is a positive linear functional (i.e. fcontinuous functiongreater than or equal to0zero \( f\geq 0 \) implies Φpositive linear functional(fcontinuous function)greater than or equal to0zero \( Φ\mathopen{}\left( f\right)\mathclose{}\geq 0 \), then there is a σ\( σ \)-algebra Mσ-algebra\( M \) of subsets of Ωcompact Hausdorff space\( Ω \) and a measure μreal number\( μ \) defined on Ωcompact Hausdorff space\( Ω \) such that (i) Mσ-algebra\( M \) contains every open subset of Ωcompact Hausdorff space\( Ω \) (so every function in Cspace of continuous functions(Ωcompact Hausdorff space) \( \mathrm{C}\mathopen{}\left( Ω\right)\mathclose{} \) is measurable); (ii) Cspace of continuous functions(Ωcompact Hausdorff space) \( \mathrm{C}\mathopen{}\left( Ω\right)\mathclose{} \) is dense in L2Lebesgue space( Ωcompact Hausdorff space Mσ-algebra μreal number ) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( Ω M μ \right)\mathclose{} \); and (iii) Φpositive linear functional(fcontinuous function)=equalsintegralΩcompact Hausdorff spacefcontinuous functiondμreal number \( Φ\mathopen{}\left( f\right)\mathclose{}= \int _{Ω}{}f\,\mathrm{d}μ \) for all fcontinuous functionelement ofCspace of continuous functions(Ωcompact Hausdorff space) \( f\in \mathrm{C}\mathopen{}\left( Ω\right)\mathclose{} \).

Start with the case of a bounded self-adjoint operator Aself-adjoint operator\( A \) on HHilbert space\( H \). For a vector ξfunctionelement ofHHilbert space \( ξ\in H \), call the closure of the linear span of {setAself-adjoint operatorninteger(ξfunction)|such that nintegergreater than or equal to0zero nintegerelement ofNnatural numbers (including zero) }set \( \mathopen{}\left\{\, {A}^{n}\mathopen{}\left( ξ\right)\mathclose{}\,\middle\vert\, , n\geq 0, , n\in \mathbb{N}, \,\right\}\mathclose{} \) the cyclic subspace generated by Aself-adjoint operator\( A \). If this subspace is all of HHilbert space\( H \), i.e. {setfcontinuous function(Aself-adjoint operator)timesξfunction|such that fcontinuous functionelement ofCspace of continuous functions(σ(Aself-adjoint operator)) }set ¯=equalsHHilbert space \( \overline{ \mathopen{}\left\{\, f\mathopen{}\left( A\right)\mathclose{}ξ\,\middle\vert\, , f\in \mathrm{C}\mathopen{}\left( \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{}\right)\mathclose{}, \,\right\}\mathclose{} }= H \), we say that ξfunction\( ξ \) is a cyclic vector for Aself-adjoint operator\( A \).

(a)  Prove Theorem S in the case of a bounded self-adjoint operator Aself-adjoint operator\( A \) on HHilbert space\( H \) with a cyclic vector. (Advice: Ωcompact Hausdorff space=equalsσ(Aself-adjoint operator) \( Ω= σ\mathopen{}\left( A\right)\mathclose{} \), Φpositive linear functional(fcontinuous function)=equalsfcontinuous function(Aself-adjoint operator)timesξfunction, ξfunction \( Φ\mathopen{}\left( f\right)\mathclose{}= \mathopen{}\left\langle{}f\mathopen{}\left( A\right)\mathclose{}ξ, ξ\right\rangle\mathclose{} \), and fcontinuous function(Aself-adjoint operator)timesξfunction 2two =equalsΦpositive linear functional(fcontinuous function2two)=equals (fcontinuous function L2Lebesgue space(Ωcompact Hausdorff spaceμreal number) ) 2two \( {\mathopen{}\left\lVert{}f\mathopen{}\left( A\right)\mathclose{}ξ\right\rVert\mathclose{}}^{2}= Φ\mathopen{}\left( {\mathopen{}\left\lVert{}f\right\rVert\mathclose{}}^{2}\right)\mathclose{}= {\mathopen{}\left(\mathopen{}\left\lVert{}f\right\rVert\mathclose{}_{ \mathrm{L}^{\mathrm{2}}\mathopen{}\left( Ωμ\right)\mathclose{} }\right)\mathclose{}}^{2} \).)

(b)  Show that in general, HHilbert space\( H \) is the direct sum of mutually orthogonal cyclic subspaces for Aself-adjoint operator\( A \).

(c)  Prove Theorem S for any bounded self-adjoint Aself-adjoint operator\( A \). (Hint: The direct sum of measure spaces (tupleXmeasure spaceiinteger, Mσ-algebraiinteger, μreal numberiinteger)tuple \( \mathopen{}\left({X}_{i}, {M}_{i}, {μ}_{i}\right)\mathclose{} \) is the disjoint union of the Xmeasure spaceiinteger \( {X}_{i} \), with the obvious measure concocted from the μreal numberiinteger \( {μ}_{i} \) on the obvious σ\( σ \)-algebra determined by the Mσ-algebraiinteger \( {M}_{i} \).)

Now let hdensely defined self-adjoint operator\( h \) be a self-adjoint operator in HHilbert space\( H \). Form the bounded operator Aself-adjoint operator\( A \) on HHilbert space\( H \) as in Section A, that is, Aself-adjoint operator=equalshdensely defined self-adjoint operatortimes (1one+plushdensely defined self-adjoint operator2two) 1one2two \( A= h{\mathopen{}\left(1+{h}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}} \), which as we have seen entails Aself-adjoint operator=equalsAself-adjoint operator* \( A= A^{*} \), 1oneless than or equal toAself-adjoint operatorless than or equal to1one \( {-}1\leq A\leq 1 \), hdensely defined self-adjoint operator=equalsAself-adjoint operatortimes (1one-minusAself-adjoint operator2two) 1one2two \( h= A{\mathopen{}\left(1-{A}^{2}\right)\mathclose{}}^{\frac{1}{2}} \), and Kerkernel(1one-minusAself-adjoint operator2two)=equals{set0zero}set \( \operatorname{Ker}\mathopen{}\left( 1-{A}^{2}\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \). Invoke (c) for Aself-adjoint operator\( A \) to get (tupleXmeasure space, Mσ-algebra, μreal number)tuple \( \mathopen{}\left(X, M, μ\right)\mathclose{} \), αmeasureable function\( α \), and Uunitary map\( U \) doing what they're supposed to do. Move everything over to L2Lebesgue space(Xmeasure spaceμreal number) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( X, μ\right)\mathclose{} \). Relabel Uunitary maptimeshdensely defined self-adjoint operatortimesUunitary map \( UhU \) as hdensely defined self-adjoint operator\( h \), now acting on HHilbert space=equalsL2Lebesgue space(Xmeasure spaceμreal number) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( X, μ\right)\mathclose{} \), and let Aself-adjoint operator\( A \) be multiplication by αmeasureable function\( α \) on the new HHilbert space\( H \). Notice that 1one<less thanαmeasureable function<less than1one \( {-}1\lt α\lt 1 \) (after redefining on a set of measure zero, if one is fussy). Consider now the measurable function βmeasurable function\( β \) defined by βmeasurable function=equalsαmeasureable functiontimes (1one-minusαmeasureable function2two) 1one2two :mapsXmeasure spaceto (intervalinfinity, infinity)interval \( β= α{\mathopen{}\left(1-{α}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}} : X \to \mathopen{}\left({-}\infty, \infty\right)\mathclose{} \). Let Mβmeasurable functionmultiplication operatorβmeasurable function\( \mathrm{M}_{β} \) be multiplication by βmeasurable function\( β \), with domain Ddomain(Mβmeasurable functionmultiplication operatorβmeasurable function)=equals{setξfunctionelement ofL2Lebesgue space(Xmeasure spaceμreal number)|such that βmeasurable functiontimesξfunctionelement ofL2Lebesgue space(Xmeasure spaceμreal number) }set \( \mathop{\mathcal{D}}\mathopen{}\left( \mathrm{M}_{β}\right)\mathclose{}= \mathopen{}\left\{\, ξ\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( Xμ\right)\mathclose{}\,\middle\vert\, , βξ\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( Xμ\right)\mathclose{}, \,\right\}\mathclose{} \). It is useful at this point to introduce the subspaces HHilbert spaceτpositive real number=equalsL2Lebesgue space(βmeasurable function1inverse([intervalτpositive real number, τpositive real number]interval)) \( {H}_{τ}= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( {β}^{-1}\mathopen{}\left( \mathopen{}\left[{-}τ, τ\right]\mathclose{}\right)\mathclose{}\right)\mathclose{} \) for τpositive real number>greater than0zero \( τ\gt 0 \).

(d)   Show that Mβmeasurable functionmultiplication operatorβmeasurable function\( \mathrm{M}_{β} \) is self-adjoint. (Hint: Modify certain of the arguments in Section A.)

(e)   Show that G(Mβmeasurable functionmultiplication operatorβmeasurable function)=equalsG(hdensely defined self-adjoint operator) \( \mathop{\mathcal{G}}\mathopen{}\left( \mathrm{M}_{β}\right)\mathclose{}= \mathop{\mathcal{G}}\mathopen{}\left( h\right)\mathclose{} \), thus finishing the proof of Theorem S. (Same hint.)

Exercise IV.52

For compactly supported continuous functions fcontinuous function:mapsRreal numbers2twotoCcomplex numbers \( f : {\mathbb{R}}^{2} \to \mathbb{C} \), define Soperatorfcontinuous function \( {S}_{f} \) on L2Lebesgue space(Rreal numbers) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{} \) by (Soperatorfcontinuous function(ξfunction))(treal number)=equalsintegralRreal numbers fcontinuous function(treal numbertreal number-minussreal number)timesξfunction(sreal number) dsreal number \( \mathopen{}\left({S}_{f}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{}= \int _{\mathbb{R}}{} f\mathopen{}\left( t, t-s\right)\mathclose{}ξ\mathopen{}\left( s\right)\mathclose{} \,\mathrm{d}s \).

(a)  Show that Soperatorfcontinuous functionelement ofbounded linear operators(L2Lebesgue space(Rreal numbers)) \( {S}_{f}\in \mathcal{L}\mathopen{}\left( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{}\right)\mathclose{} \), with Soperatorfcontinuous functionless than or equal tofcontinuous functionL2Lebesgue space(Rreal numbers2two) \( \mathopen{}\left\lVert{}{S}_{f}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}f\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}\mathopen{}\left( {\mathbb{R}}^{2}\right)\mathclose{}} \).

(b)  Let Kset of operators=equals{setSoperatorfcontinuous function|such that fcontinuous functionelement ofCspace of continuous functions0zero(Rreal numbers2two) }set \( K= \mathopen{}\left\{\, {S}_{f}\,\middle\vert\, , f\in {\mathrm{C}}_{0}\mathopen{}\left( {\mathbb{R}}^{2}\right)\mathclose{}, \,\right\}\mathclose{} \). Show that the closure of Kset of operators\( K \) (in the operator norm) is 𝒦compact linear operators(L2Lebesgue space(Rreal numbers)) \( \mathcal{K}\mathopen{}\left( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{}\right)\mathclose{} \).

Exercise IV.53

Let Sunilateral shift\( S \) be the unilateral shift on l2\( \mathrm{l}^{0} \). That is, Sunilateral shift(avector)=equalsSunilateral shift(areal number1oneareal number2twoareal number3three)=equals(tuple0zero, areal number1one, areal number2two, )tuple \( S\mathopen{}\left( \mathbf{a}\right)\mathclose{}= S\mathopen{}\left( {a}_{1}, {a}_{2}, {a}_{3}, \dotsc\right)\mathclose{}= \mathopen{}\left(0, {a}_{1}, {a}_{2}, \dotsc\right)\mathclose{} \). Show that σ(Sunilateral shift+plusSunilateral shift*)=equals[interval2two, 2two]interval \( \mathop{\sigma}\mathopen{}\left( S+ S^{*}\right)\mathclose{}= \mathopen{}\left[{-}2, 2\right]\mathclose{} \). (Advice: The inclusion σ(Sunilateral shift+plusSunilateral shift*)subset[interval2two, 2two]interval \( \mathop{\sigma}\mathopen{}\left( S+ S^{*}\right)\mathclose{}\subseteq \mathopen{}\left[{-}2, 2\right]\mathclose{} \) is clear. To show [interval2two, 2two]intervalsubsetσ(Sunilateral shift+plusSunilateral shift*) \( \mathopen{}\left[{-}2, 2\right]\mathclose{}\subseteq \mathop{\sigma}\mathopen{}\left( S+ S^{*}\right)\mathclose{} \), try solving (Sunilateral shift+plusSunilateral shift*-minusλcomplex number)(avector)=equals(tuple1one, 0zero, 0zero, )tuple \( \mathopen{}\left(S+ S^{*}-λ\right)\mathclose{}\mathopen{}\left( \mathbf{a}\right)\mathclose{}= \mathopen{}\left(1, 0, 0, \dotsc\right)\mathclose{} \), say, for avectorelement ofl2 \( \mathbf{a}\in \mathrm{l}^{0} \). The algebraic solution of the second-order linear recurrence you encounter is governed by the eigenvalues and eigenvectors of the two-by-two matrix relating (tupleareal numberninteger+plus2two, areal numberninteger+plus1one)tuple \( \mathopen{}\left({a}_{n+2}, {a}_{n+1}\right)\mathclose{} \) to (tupleareal numberninteger+plus1one, areal numberninteger)tuple \( \mathopen{}\left({a}_{n+1}, {a}_{n}\right)\mathclose{} \).)

Exercise IV.54

This exercise has to do with the order 0zero\( 0 \) Bessel function of the first kind, that is, the function JBessel function of the first kind0zero \( {J}_{0} \) given as a power series by JBessel function of the first kind0zero(xreal number)=equalssummationninteger=0zeroinfinity (1one) ninteger (ninteger!) 2two times (xreal number2two) 2twotimesninteger \( {J}_{0}\mathopen{}\left( x\right)\mathclose{}= \sum_{n=0}^{\infty}{} \frac{{\mathopen{}\left({-}1\right)\mathclose{}}^{n}}{{\mathopen{}\left({n!}\right)\mathclose{}}^{2}}{\mathopen{}\left(\frac{x}{2}\right)\mathclose{}}^{2n} \). It is up to scalar multiple the only solution without singularity at xreal number=equals0zero \( x= 0 \) of Bessel's equation of order 0zero\( 0 \): xreal numbertimesyfunctionsecond derivative(xreal number)+plusyfunctionderivative(xreal number)+plusxreal numbertimesyfunction(xreal number)=equals0zero \( xy'' \mathopen{}\left( x\right)\mathclose{}+y' \mathopen{}\left( x\right)\mathclose{}+xy\mathopen{}\left( x\right)\mathclose{}= 0 \). The main thing here is to show that the sum of the squared reciprocals of the positive zeros of JBessel function of the first kind0zero \( {J}_{0} \) is 1one4four \( \frac{1}{4} \). Along the way, an orthonormal basis for L2Lebesgue space([interval0zero, 1one]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) will emerge that is indispensable for modeling the small oscillations of a flexible chain hung from a hook. (See Chapter 9 of Young's book [12].)

(a)  Let Dsubset of functions0zero=equals{setfcontinuous functionelement ofC1space of continuously differentiable functions([interval0zero, 1one]interval)|such that xreal numberis mapped toxreal numbertimesfcontinuous functionderivative(xreal number)element ofC1space of continuously differentiable functions([interval0zero, 1one]interval) fcontinuous function(1one)=equals0zero }set \( {D}_{0}= \mathopen{}\left\{\, f\in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}\,\middle\vert\, , x\mapsto xf' \mathopen{}\left( x\right)\mathclose{}\in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}, , f\mathopen{}\left( 1\right)\mathclose{}= 0, \,\right\}\mathclose{} \). Define Loperator:maps Dsubset of functions0zero to Cspace of continuous functions([interval0zero, 1one]interval) \( L : {D}_{0} \to \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) by (Loperator(fcontinuous function))(xreal number)=equalsxreal numbertimesfcontinuous functionsecond derivative(xreal number)-minusfcontinuous functionderivative(xreal number)=equals ddxreal numberderivative with respect to x (xreal numbertimesfcontinuous functionderivative(xreal number)) . \[ \mathopen{}\left(L\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= {-}xf'' \mathopen{}\left( x\right)\mathclose{}-f' \mathopen{}\left( x\right)\mathclose{}= {-} \frac{\mathrm{d}}{\mathrm{d}x}\mathopen{}\left( xf' \mathopen{}\left( x\right)\mathclose{}\right)\mathclose{} \text{.} \] Show that the eigenvalues of Loperator\( L \) are {set βzero of Bessel function2two 4four |such that JBessel function of the first kind0zero(βzero of Bessel function)=equals0zero }set \( \mathopen{}\left\{\, \frac{{β}^{2}}{4}\,\middle\vert\, , {J}_{0}\mathopen{}\left( β\right)\mathclose{}= 0, \,\right\}\mathclose{} \), with corresponding eigenfunctions xreal numberis mapped toJBessel function of the first kind0zero(βzero of Bessel functiontimesxreal number) \( x\mapsto {J}_{0}\mathopen{}\left( β\sqrt{x}\right)\mathclose{} \). (Advice: Loperator(fcontinuous function)=equalsλpositive real numbertimesfcontinuous function \( L\mathopen{}\left( f\right)\mathclose{}= λf \) makes λpositive real numbertimesfcontinuous function2two=equalsLoperator(fcontinuous function), fcontinuous function \( λ{\mathopen{}\left\lVert{}f\right\rVert\mathclose{}}^{2}= \mathopen{}\left\langle{}L\mathopen{}\left( f\right)\mathclose{}, f\right\rangle\mathclose{} \). Integrate by parts to show the eigenvalues are positive. For λpositive real number>greater than0zero \( λ\gt 0 \), show that xreal numbertimesfcontinuous functionsecond derivative(xreal number)+plusfcontinuous functionderivative(xreal number)+plusλpositive real numbertimesfcontinuous function(xreal number)=equals0zero \( xf'' \mathopen{}\left( x\right)\mathclose{}+f' \mathopen{}\left( x\right)\mathclose{}+λf\mathopen{}\left( x\right)\mathclose{}= 0 \) if and only if yfunction=equalsfcontinuous function(2twotimesλpositive real numbertimesxreal number) \( y= f\mathopen{}\left( 2\sqrt{λx}\right)\mathclose{} \) satisfies Bessel's equation of order 0zero\( 0 \).)

(b)  For ξfunctionelement ofHHilbert space=equalsL2Lebesgue space([interval0zero, 1one]interval) \( ξ\in H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), define KHilbert-Schmidt operator(ξfunction) \( K\mathopen{}\left( ξ\right)\mathclose{} \) on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \) by (KHilbert-Schmidt operator(ξfunction))(xreal number)=equals loglogarithm(xreal number) timesintegral0zeroxreal numberξfunction(treal number)dtreal number-minusintegralxreal number1one loglogarithm(treal number)timesξfunction(treal number) dtreal number. \[ \mathopen{}\left(K\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= {-} \log\mathopen{}\left( x\right)\mathclose{} \int _{0}^{x}{}ξ\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}t-\int _{x}^{1}{} \log\mathopen{}\left( t\right)\mathclose{}ξ\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t\text{.} \] Show that KHilbert-Schmidt operator\( K \) is a self-adjoint Hilbert-Schmidt operator on HHilbert space\( H \) mapping Cspace of continuous functions([interval0zero, 1one]interval) \( \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) to Dsubset of functions0zero \( {D}_{0} \), that Loperator(KHilbert-Schmidt operator(ξfunction))=equalsξfunction \( L\mathopen{}\left( K\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= ξ \) for ξfunctionelement ofCspace of continuous functions([interval0zero, 1one]interval) \( ξ\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), and that KHilbert-Schmidt operator(Loperator(fcontinuous function))=equalsfcontinuous function \( K\mathopen{}\left( L\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}= f \) for fcontinuous functionelement ofDsubset of functions0zero \( f\in {D}_{0} \). (Advice: Exhibit KHilbert-Schmidt operator\( K \) as an integral operator with kernel kkernelelement ofL2Lebesgue space( [interval0zero, 1one]interval 2two ) \( k\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( {\mathopen{}\left[0, 1\right]\mathclose{}}^{2}\right)\mathclose{} \) satisfying kkernel(xreal numbertreal number)=equalskkernel(treal numberxreal number) \( k\mathopen{}\left( x, t\right)\mathclose{}= k\mathopen{}\left( t, x\right)\mathclose{} \). Notice loglogarithmelement ofHHilbert space \( \log\in H \) and use L'Hôpital's Rule at xreal number=equals0zero \( x= 0 \) when necessary.)

(c)  Let βzero of Bessel functioniinteger \( {β}_{i} \), iintegerelement of{set1one2two}set \( i\in \mathopen{}\left\{\, 1, 2, \dotsc\,\right\}\mathclose{} \), denote the positive zeros of JBessel function of the first kind0zero \( {J}_{0} \). Define φfunctionjinteger \( {φ}_{j} \) on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \) by φfunctionjinteger(xreal number)=equals JBessel function of the first kind0zero(βzero of Bessel functionjintegertimesxreal number) (integral0zero1oneJBessel function of the first kind0zerotimes (βzero of Bessel functionjintegertimesxreal number) 2two dxreal number) 1one2two . \[ {φ}_{j}\mathopen{}\left( x\right)\mathclose{}= \frac{{J}_{0}\mathopen{}\left( {β}_{j}\sqrt{x}\right)\mathclose{}}{{\mathopen{}\left(\int _{0}^{1}{}{J}_{0}{\mathopen{}\left({β}_{j}\sqrt{x}\right)\mathclose{}}^{2}\,\mathrm{d}x\right)\mathclose{}}^{\frac{1}{2}}}\text{.} \] Show that {setφfunction1oneφfunction2two}set \( \mathopen{}\left\{\, {φ}_{1}, {φ}_{2}, \dotsc\,\right\}\mathclose{} \) is an orthonormal basis for HHilbert space\( H \) with KHilbert-Schmidt operator(φfunctionjinteger)=equals 4four βzero of Bessel functionjinteger2two timesφfunctionjinteger \( K\mathopen{}\left( {φ}_{j}\right)\mathclose{}= \frac{4}{{{β}_{j}}^{2}}{φ}_{j} \) for every jinteger\( j \). (This includes showing that Kerkernel(KHilbert-Schmidt operator)=equals{set0zero}set \( \operatorname{Ker}\mathopen{}\left( K\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \), and accounting for all of the nonzero eigenvalues of KHilbert-Schmidt operator\( K \).)

It is experimentally obvious, and not very difficult to show, that βzero of Bessel functionjinteger>greater thanjinteger \( {β}_{j}\gt j \) for every jinteger\( j \). It follows that KHilbert-Schmidt operator\( K \) is a trace class operator, with trace timessummationjinteger βzero of Bessel functionjinteger2two \( \sum_{j}{} {{β}_{j}}^{{-}2} \). We would like to identify this number in a more vivid way by integrating the kernel you found in part (b) along the diagonal. Unfortunately, though, the kernel has a singularity at (interval0zero, 0zero)interval \( \mathopen{}\left(0, 0\right)\mathclose{} \), and proof of the relevant theorem strongly uses uniform continuity of the kernel. To save the calculation, we have to approximate KHilbert-Schmidt operator\( K \) by operators with kernels that are continuous everywhere on the square.

(d)  For nintegergreater than or equal to2two \( n\geq 2 \), nintegerelement ofNnatural numbers (including zero) \( n\in \mathbb{N} \), let Λfunctionninteger \( {Λ}_{n} \) be the function on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \) that is loglogarithm(ninteger) \( \log\mathopen{}\left( n\right)\mathclose{} \) on [interval0zero, 1oneninteger]interval \( \mathopen{}\left[0, \frac{1}{n}\right]\mathclose{} \) and loglogarithm(ninteger) \( {-}\log\mathopen{}\left( n\right)\mathclose{} \) on (interval1oneninteger, 1one]interval \( \mathopen{}\left(\frac{1}{n}, 1\right]\mathclose{} \). Define the operator KHilbert-Schmidt operatorninteger \( {K}_{n} \) by (KHilbert-Schmidt operatorninteger, ξfunction)(xreal number)=equalsΛfunctionninteger(xreal number)timesintegral0zeroxreal numberξfunction(treal number)dtreal number+plusintegralxreal number1one Λfunctionninteger(treal number)timesξfunction(treal number) dtreal number. \[ \mathopen{}\left({K}_{n}, ξ\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= {Λ}_{n}\mathopen{}\left( x\right)\mathclose{}\int _{0}^{x}{}ξ\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}t+\int _{x}^{1}{} {Λ}_{n}\mathopen{}\left( t\right)\mathclose{}ξ\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t\text{.} \] You can easily write down the kernel for KHilbert-Schmidt operatorninteger \( {K}_{n} \) and see thereby that KHilbert-Schmidt operatorninteger \( {K}_{n} \) is a self-adjoint Hilbert-Schmidt operator on HHilbert space\( H \). Consider also Δoperatorninteger \( {Δ}_{n} \) defined by (Δoperatorninteger(ξfunction))(xreal number)=equals{cases0zero, xreal number>greater than1oneninteger ; loglogarithm(xreal number)timesintegral0zeroxreal numberξfunction(treal number)dtreal number-minusintegralxreal number1oneninteger loglogarithm(treal number)timesξfunction(treal number) dtreal number, xreal numberless than or equal to1oneninteger }. \[ \mathopen{}\left({Δ}_{n}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \begin{cases}0, & x\gt \frac{1}{n} ; \\ {-}\log\mathopen{}\left( x\right)\mathclose{}\int _{0}^{x}{}ξ\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}t-\int _{x}^{\frac{1}{n}}{} \log\mathopen{}\left( t\right)\mathclose{}ξ\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t, & x\leq \frac{1}{n} \end{cases}\text{.} \] Show that KHilbert-Schmidt operator=equalsKHilbert-Schmidt operatorninteger+plusΔoperatorninteger-minusloglogarithm(ninteger)timesχ [interval0zero, 1oneninteger]interval characteristic function of [0, 1ninteger] χ [interval0zero, 1oneninteger]interval characteristic function of [0, 1ninteger] \( K= {K}_{n}+{Δ}_{n}-\log\mathopen{}\left( n\right)\mathclose{}\chi_{ \mathopen{}\left[0, \frac{1}{n}\right]\mathclose{} }\otimes \chi_{ \mathopen{}\left[0, \frac{1}{n}\right]\mathclose{} } \).

(e)  Show that Δoperatorninteger \( {Δ}_{n} \) is trace class and calculate its trace in terms of the Bessel zeros βzero of Bessel functionjinteger \( {β}_{j} \). (Advice: Notice that Δoperatorninteger \( {Δ}_{n} \) is the operator obtained by rescaling KHilbert-Schmidt operator\( K \) from [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \) to [interval0zero, 1oneninteger]interval \( \mathopen{}\left[0, \frac{1}{n}\right]\mathclose{} \).)

(f)  It now follows that KHilbert-Schmidt operatorninteger \( {K}_{n} \) is trace class. Find its trace by integrating its kernel function along the diagonal.

(g)  Show that summationjinteger βzero of Bessel functionjinteger2two =equals1one4four \( \sum_{j}{} {{β}_{j}}^{{-}2} = \frac{1}{4} \).


Previous: Unbounded Operators back to top