Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

E. Integral Operators

Let SVolterra operator\( S \) be the Volterra operator on L2Lebesgue space([interval0zero, 1one]interval)=equalsHHilbert space \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}= H \). Then (SVolterra operator(ffunction))(xreal number)=equalsintegral0zeroxreal numberffunction \( \mathopen{}\left(S\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{}f \). We showed SVolterra operator2two \( {S}^{2} \) is trace-class. (SVolterra operator2two(ffunction))(xreal number)=equalsintegral0zeroxreal number (SVolterra operator(ffunction))(sreal number) dsreal number=equalsintegral0zeroxreal number integral0zerosreal number ffunction(treal number) dtreal number dsreal number . \[ \mathopen{}\left({S}^{2}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{} \mathopen{}\left(S\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( s\right)\mathclose{} \,\mathrm{d}s= \int _{0}^{x}{} \int _{0}^{s}{} f\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t \,\mathrm{d}s \text{.} \] Fubinize to get (SVolterra operator2two(ffunction))(xreal number)=equalsintegral0zeroxreal number integraltreal numberxreal numberffunction(treal number)dsreal number dtreal number=equalsintegral0zeroxreal number (xreal number-minustreal number)timesffunction(treal number) dtreal number=equalsintegral0zero1one τfunction(xreal numbertreal number)timesffunction(treal number) dtreal number \[ \mathopen{}\left({S}^{2}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{} \int _{t}^{x}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}s \,\mathrm{d}t= \int _{0}^{x}{} \mathopen{}\left(x-t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t= \int _{0}^{1}{} τ\mathopen{}\left( x, t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t \] where τfunction(xreal numbertreal number)=equals{casesxreal number-minustreal number, 0zeroless than or equal totreal numberless than or equal toxreal number; 0zero, else,} \[ τ\mathopen{}\left( x, t\right)\mathclose{}= \begin{cases}x-t, & 0\leq t\leq x; \\ 0, & \text{else,}\end{cases} \] which is continuous on [interval0zero, 1one]interval 2two \( {\mathopen{}\left[0, 1\right]\mathclose{}}^{2} \).

We say that SVolterra operator2two \( {S}^{2} \) is an integral operator with kernel τfunction\( τ \). Our goal in what follows is a formula for the trace of a trace-class operator that can be realized as an integral operator with a continuous kernel. This will need some Fourier series lore, both to furnish a suitable basis for HHilbert space=equalsL2Lebesgue space([interval0zero, 1one]interval) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), and to use Fourier expansions to approximate continuous functions uniformly on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \). For the basis, let eunit vector0zero=equals1one \( {e}_{0}= 1 \), and then eunit vectorninteger(xreal number)=equals2twotimescoscosine(nintegertimesπtimesxreal number) \( {e}_{n}\mathopen{}\left( x\right)\mathclose{}= \sqrt{2}\cos\mathopen{}\left( nπx\right)\mathclose{} \) for nintegerelement of{set1one2two}set \( n\in \mathopen{}\left\{\, 1, 2, \dotsc\,\right\}\mathclose{} \). The argument at the end of Chapter 1 for the completeness of the sine basis, crucially modified by extending functions on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \) evenly to [interval1one, 1one]interval \( \mathopen{}\left[{-}1, 1\right]\mathclose{} \) rather than oddly, shows that the sequence {seteunit vector0zeroeunit vector1oneeunit vector2two}set \( \mathopen{}\left\{\, {e}_{0}, {e}_{1}, {e}_{2}, \dotsc\,\right\}\mathclose{} \) is an orthonormal basis for HHilbert space\( H \). (The main reason to use the cosine basis is that the even extension of any continuous function on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \) is continuous on [interval1one, 1one]interval \( \mathopen{}\left[{-}1, 1\right]\mathclose{} \) with the same value at 1one\( 1 \) as at 1one \( {-}1 \).)

Let Pprojectionninteger \( {P}_{n} \) be the projection on spanspan(eunit vector0zeroeunit vector1oneeunit vectorninteger) \( \operatorname{span}\mathopen{}\left( {e}_{0}, {e}_{1}, \dotsc, {e}_{n}\right)\mathclose{} \). Then Pprojectionninteger(ffunction) \( {P}_{n}\mathopen{}\left( f\right)\mathclose{} \) is the ninteger\( n \)th partial sum of the Fourier cosine series of ffunction\( f \), summationninteger=0zeroinfinity ffunction, eunit vectornintegertimeseunit vectorninteger . \[ \sum_{n=0}^{\infty}{} \mathopen{}\left\langle{}f, {e}_{n}\right\rangle\mathclose{}{e}_{n} \text{.} \] Although Pprojectionninteger(ffunction)-minusffunctioninfinity \( \mathopen{}\left\lVert{}{P}_{n}\mathopen{}\left( f\right)\mathclose{}-f\right\rVert\mathclose{}_{\infty} \) need not go to zero for continuous ffunction\( f \), we get uniform convergence if we consider the Cesàro means CCesàro meanninteger=equals1oneninteger+plus1onetimes(Pprojection0zero+plusPprojection1one+plus+plusPprojectionninteger) \( {C}_{n}= \frac{1}{n+1}\mathopen{}\left({P}_{0}+{P}_{1}+\dotsb+{P}_{n}\right)\mathclose{} \) of the series.

Theorem III.41 (Fejer's Theorem)

Let Ffamily of functions\( F \) be a uniformly bounded equicontinuous family of functions on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \). Then for all εpositive real number>greater than0zero \( ε\gt 0 \) there exists Ninteger\( N \) such that CCesàro meanninteger(ffunction)-minusffunctioninfinity<less thanεpositive real number \( \mathopen{}\left\lVert{}{C}_{n}\mathopen{}\left( f\right)\mathclose{}-f\right\rVert\mathclose{}_{\infty}\lt ε \) for all ninteger>greater thanNinteger \( n\gt N \) and all ffunctionelement ofFfamily of functions \( f\in F \); in particular, CCesàro meanninteger(ffunction)converges toffunction \( {C}_{n}\mathopen{}\left( f\right)\mathclose{} \to f \) uniformly for all ffunctionelement ofCspace of continuous functions([interval0zero, 1one]interval) \( f\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \).

Proof. See for instance Chapter 5 of Young [12] for the proof in the standard situation of a single 2twotimesπ\( 2π \)-periodic function gfunction\( g \) on Rreal numbers\( \mathbb{R} \) and its usual Fourier series, then rescale and specialize to even gfunction\( g \). The extension to bounded, equicontinuous families follows effortlessly from the observation that the upper estimates in the proof depend only on gfunctioninfinity \( \mathopen{}\left\lVert{}g\right\rVert\mathclose{}_{\infty} \) and |modulusgfunction(xreal number)-minusgfunction(yreal number)|modulus \( \mathopen{}\left\lvert{}g\mathopen{}\left( x\right)\mathclose{}-g\mathopen{}\left( y\right)\mathclose{}\right\rvert\mathclose{} \) for small |modulusxreal number-minusyreal number|modulus \( \mathopen{}\left\lvert{}x-y\right\rvert\mathclose{} \).

Theorem III.42

Suppose Ttrace-class operatorelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \) has the form Ttrace-class operator(ffunction(xreal number))=equalsintegral0zero1one τcontinuous function(xreal numbertreal number)timesffunction(treal number) dtreal number \[ T\mathopen{}\left( f\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}= \int _{0}^{1}{} τ\mathopen{}\left( x, t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t \] for some continuous τcontinuous function\( τ \) on [interval0zero, 1one]interval 2two \( {\mathopen{}\left[0, 1\right]\mathclose{}}^{2} \) (i.e. Ttrace-class operator\( T \) is a trace-class integral operator with continuous kernel). Then Trtrace(Ttrace-class operator)=equalsintegral0zero1oneτcontinuous function(xreal numberxreal number)dxreal number \( \operatorname{Tr}\mathopen{}\left( T\right)\mathclose{}= \int _{0}^{1}{}τ\mathopen{}\left( x, x\right)\mathclose{}\,\mathrm{d}x \).

Proof. This proof is taken from Gohberg [3]. With (sequenceeunit vectorninteger)sequenceninteger=0zeroinfinity \( \mathopen{}\left({e}_{n}\right)\mathclose{}_{n=0}^{\infty} \) the cosine basis as above, Trtrace(Ttrace-class operator)=equalssummationninteger Ttrace-class operator(eunit vectorninteger), eunit vectorninteger \( \operatorname{Tr}\mathopen{}\left( T\right)\mathclose{}= \sum_{n}{} \mathopen{}\left\langle{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}, {e}_{n}\right\rangle\mathclose{} \), which is the limit of the sequence of Cesàro means. Then, with τcontinuous functionxreal numberelement ofCspace of continuous functions([interval0zero, 1one]interval) \( {τ}_{x}\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) defined by τcontinuous functionxreal number(treal number)=equalsτcontinuous function(xreal numbertreal number) \( {τ}_{x}\mathopen{}\left( t\right)\mathclose{}= τ\mathopen{}\left( x, t\right)\mathclose{} \), Ttrace-class operator(eunit vectorninteger), eunit vectorninteger=equalsintegral0zero1one (Ttrace-class operator(eunit vectorninteger))(xreal number)timeseunit vectorninteger(xreal number) dxreal number=equalsintegral0zero1one integral0zero1one τcontinuous function(xreal numbertreal number)timeseunit vectorninteger(treal number)timeseunit vectorninteger(xreal number) dtreal number dxreal number=equalsintegral0zero1one (τcontinuous functionxreal number, eunit vectornintegertimeseunit vectorninteger)(xreal number) dxreal number . \[ \mathopen{}\left\langle{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}, {e}_{n}\right\rangle\mathclose{}= \int _{0}^{1}{} \mathopen{}\left(T\mathopen{}\left( {e}_{n}\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}{e}_{n}\mathopen{}\left( x\right)\mathclose{} \,\mathrm{d}x= \int _{0}^{1}{} \int _{0}^{1}{} τ\mathopen{}\left( x, t\right)\mathclose{}{e}_{n}\mathopen{}\left( t\right)\mathclose{}{e}_{n}\mathopen{}\left( x\right)\mathclose{} \,\mathrm{d}t \,\mathrm{d}x= \int _{0}^{1}{} \mathopen{}\left(\mathopen{}\left\langle{}{τ}_{x}, {e}_{n}\right\rangle\mathclose{}{e}_{n}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{} \,\mathrm{d}x \text{.} \] Let ACesàro meanninteger \( {A}_{n} \) be the ninteger\( n \)th Cesàro mean of summation Ttrace-class operator(eunit vectorninteger), eunit vectorninteger \( \sum{} \mathopen{}\left\langle{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}, {e}_{n}\right\rangle\mathclose{} \) so that ACesàro meannintegerconverges toTrtrace(Ttrace-class operator) \( {A}_{n} \to \operatorname{Tr}\mathopen{}\left( T\right)\mathclose{} \). Then ACesàro meanninteger=equalsintegral0zero1one (CCesàro meanninteger(τcontinuous functionxreal number))(xreal number) dxreal number \( {A}_{n}= \int _{0}^{1}{} \mathopen{}\left({C}_{n}\mathopen{}\left( {τ}_{x}\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{} \,\mathrm{d}x \) and |modulusACesàro meanninteger-minusintegral0zero1oneτcontinuous function(xreal numberxreal number)dxreal number|modulus=equals|modulusintegral0zero1one ((CCesàro meanninteger(τcontinuous functionxreal number))(xreal number)-minusτcontinuous functionxreal number(xreal number)) dxreal number|modulusless than or equal tointegral0zero1one CCesàro meanninteger(τcontinuous functionxreal number)-minusτcontinuous functionxreal numberinfinity dxreal numberless than or equal tosupsupremumxreal number CCesàro meanninteger(τcontinuous functionxreal number)-minusτcontinuous functionxreal number converges to0zero \[ \mathopen{}\left\lvert{}{A}_{n}-\int _{0}^{1}{}τ\mathopen{}\left( x, x\right)\mathclose{}\,\mathrm{d}x\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\int _{0}^{1}{} \mathopen{}\left(\mathopen{}\left({C}_{n}\mathopen{}\left( {τ}_{x}\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}-{τ}_{x}\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{} \,\mathrm{d}x\right\rvert\mathclose{}\leq \int _{0}^{1}{} \mathopen{}\left\lVert{}{C}_{n}\mathopen{}\left( {τ}_{x}\right)\mathclose{}-{τ}_{x}\right\rVert\mathclose{}_{\infty} \,\mathrm{d}x\leq \sup_{x}{} \mathopen{}\left\lVert{}{C}_{n}\mathopen{}\left( {τ}_{x}\right)\mathclose{}-{τ}_{x}\right\rVert\mathclose{} \to 0 \] by Fejer for Families because F=equals{setτcontinuous functionxreal number|such that xreal numberelement of[interval0zero, 1one]interval }set \( F= \mathopen{}\left\{\, {τ}_{x}\,\middle\vert\, , x\in \mathopen{}\left[0, 1\right]\mathclose{}, \,\right\}\mathclose{} \) is uniformly bounded, and also equicontinuous because of the uniform continuity of τcontinuous function\( τ \).

In particular, if SVolterra operator\( S \) is the Volterra operator, then Trtrace(SVolterra operator2two)=equals0zero \( \operatorname{Tr}\mathopen{}\left( {S}^{2}\right)\mathclose{}= 0 \).

Corollary III.43

For any rfunctionelement ofCspace of continuous functions([interval0zero, 1one]interval) \( r\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), the operator Ttrace-class operator\( T \) defined by (Ttrace-class operator(ffunction))(xreal number)=equalsintegral0zeroxreal number (xreal number-minustreal number)timesffunction(treal number)timesrfunction(treal number) dtreal number \[ \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{} \mathopen{}\left(x-t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{}r\mathopen{}\left( t\right)\mathclose{} \,\mathrm{d}t \] is trace-class and Trtrace(Ttrace-class operator)=equals0zero \( \operatorname{Tr}\mathopen{}\left( T\right)\mathclose{}= 0 \).

Proof. If SVolterra operator\( S \) is the Volterra operator, and Mrfunctionmultiplication operatorrfunction \( \mathrm{M}_{r} \) denotes multiplication by rfunction\( r \), then Ttrace-class operator=equalsSVolterra operator2twocompositionMrfunctionmultiplication operatorrfunctionelement of𝒯trace-class operators(HHilbert space) \( T= {S}^{2}\circ \mathrm{M}_{r}\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \). The kernel of Ttrace-class operator\( T \) is just τfunction(xreal numbertreal number)timesrfunction(treal number) \( τ\mathopen{}\left( x, t\right)\mathclose{}r\mathopen{}\left( t\right)\mathclose{} \), which is 0zero\( 0 \) on the diagonal.


Previous: Trace-Class/Compact Duality back to top Next: Hilbert-Schmidt Operators