Lecture Notes in Functional Analysis
by William L. Paschke
edition 0.9
image/svg+xml
E. Integral Operators
Let S Volterra operator \( S \) be the Volterra operator on
L 2 Lebesgue space ( [ interval 0 zero , 1 one ] interval ) = equals H Hilbert space
\(
\mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}= H
\) .
Then
( S Volterra operator ( f function ) ) ( x real number ) = equals ∫ integral 0 zero x real number f function
\(
\mathopen{}\left(S\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{}f
\) .
We showed
S Volterra operator 2 two
\(
{S}^{2}
\)
is trace-class.
( S Volterra operator 2 two ( f function ) ) ( x real number ) = equals ∫ integral 0 zero x real number
( S Volterra operator ( f function ) ) ( s real number )
d s real number = equals ∫ integral 0 zero x real number
∫ integral 0 zero s real number
f function ( t real number )
d t real number
d s real number
.
\[
\mathopen{}\left({S}^{2}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{}
\mathopen{}\left(S\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( s\right)\mathclose{}
\,\mathrm{d}s= \int _{0}^{x}{}
\int _{0}^{s}{}
f\mathopen{}\left( t\right)\mathclose{}
\,\mathrm{d}t
\,\mathrm{d}s
\text{.}
\] Fubinize to get
( S Volterra operator 2 two ( f function ) ) ( x real number ) = equals ∫ integral 0 zero x real number
∫ integral t real number x real number f function ( t real number ) d s real number
d t real number = equals ∫ integral 0 zero x real number
( x real number - minus t real number ) times f function ( t real number )
d t real number = equals ∫ integral 0 zero 1 one
τ function ( x real number t real number ) times f function ( t real number )
d t real number
\[
\mathopen{}\left({S}^{2}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{}
\int _{t}^{x}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}s
\,\mathrm{d}t= \int _{0}^{x}{}
\mathopen{}\left(x-t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{}
\,\mathrm{d}t= \int _{0}^{1}{}
τ\mathopen{}\left( x, t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{}
\,\mathrm{d}t
\] where
τ function ( x real number t real number ) = equals { cases x real number - minus t real number , 0 zero ≤ less than or equal to t real number ≤ less than or equal to x real number ; 0 zero , else, }
\[
τ\mathopen{}\left( x, t\right)\mathclose{}= \begin{cases}x-t, & 0\leq t\leq x; \\ 0, & \text{else,}\end{cases}
\] which is continuous on
[ interval 0 zero , 1 one ] interval
2 two
\(
{\mathopen{}\left[0, 1\right]\mathclose{}}^{2}
\) .
We say that
S Volterra operator 2 two
\(
{S}^{2}
\)
is an integral operator with kernel τ function \( τ \) . Our goal in what follows is a formula for the trace of a trace-class operator that can be realized as an integral operator with a continuous kernel. This will need some Fourier series lore, both to furnish a suitable basis for
H Hilbert space = equals L 2 Lebesgue space ( [ interval 0 zero , 1 one ] interval )
\(
H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\) ,
and to use Fourier expansions to approximate continuous functions uniformly on
[ interval 0 zero , 1 one ] interval
\(
\mathopen{}\left[0, 1\right]\mathclose{}
\) .
For the basis, let
e unit vector 0 zero = equals 1 one
\(
{e}_{0}= 1
\) ,
and then
e unit vector n integer ( x real number ) = equals 2 two times cos cosine ( n integer times π times x real number )
\(
{e}_{n}\mathopen{}\left( x\right)\mathclose{}= \sqrt{2}\cos\mathopen{}\left( nπx\right)\mathclose{}
\)
for
n integer ∈ element of { set 1 one 2 two … } set
\(
n\in \mathopen{}\left\{\, 1, 2, \dotsc\,\right\}\mathclose{}
\) .
The argument at the end of Chapter 1 for the completeness of the sine basis, crucially modified by extending functions on
[ interval 0 zero , 1 one ] interval
\(
\mathopen{}\left[0, 1\right]\mathclose{}
\)
evenly to
[ interval − 1 one , 1 one ] interval
\(
\mathopen{}\left[{-}1, 1\right]\mathclose{}
\)
rather than oddly, shows that the sequence
{ set e unit vector 0 zero e unit vector 1 one e unit vector 2 two … } set
\(
\mathopen{}\left\{\, {e}_{0}, {e}_{1}, {e}_{2}, \dotsc\,\right\}\mathclose{}
\)
is an orthonormal basis for H Hilbert space \( H \) .
(The main reason to use the cosine basis is that the even extension of any continuous function on
[ interval 0 zero , 1 one ] interval
\(
\mathopen{}\left[0, 1\right]\mathclose{}
\)
is continuous on
[ interval − 1 one , 1 one ] interval
\(
\mathopen{}\left[{-}1, 1\right]\mathclose{}
\)
with the same value at 1 one \( 1 \) as at
− 1 one
\(
{-}1
\) .)
Let
P projection n integer
\(
{P}_{n}
\)
be the projection on
span span ( e unit vector 0 zero e unit vector 1 one … e unit vector n integer )
\(
\operatorname{span}\mathopen{}\left( {e}_{0}, {e}_{1}, \dotsc, {e}_{n}\right)\mathclose{}
\) .
Then
P projection n integer ( f function )
\(
{P}_{n}\mathopen{}\left( f\right)\mathclose{}
\)
is the n integer \( n \) th partial sum of
the Fourier cosine series of f function \( f \) ,
∑ summation n integer = 0 zero ∞ infinity
〈 f function , e unit vector n integer 〉 times e unit vector n integer
.
\[
\sum_{n=0}^{\infty}{}
\mathopen{}\left\langle{}f, {e}_{n}\right\rangle\mathclose{}{e}_{n}
\text{.}
\]
Although
‖ P projection n integer ( f function ) - minus f function ‖ ∞ infinity
\(
\mathopen{}\left\lVert{}{P}_{n}\mathopen{}\left( f\right)\mathclose{}-f\right\rVert\mathclose{}_{\infty}
\)
need not go to zero for continuous f function \( f \) , we get
uniform convergence if we consider the Cesàro means
C Cesàro mean n integer = equals 1 one n integer + plus 1 one times ( P projection 0 zero + plus P projection 1 one + plus ⋯ + plus P projection n integer )
\(
{C}_{n}= \frac{1}{n+1}\mathopen{}\left({P}_{0}+{P}_{1}+\dotsb+{P}_{n}\right)\mathclose{}
\)
of the series.
Theorem III.41 (Fejer's Theorem)
Let F family of functions \( F \) be a uniformly bounded equicontinuous family of functions on
[ interval 0 zero , 1 one ] interval
\(
\mathopen{}\left[0, 1\right]\mathclose{}
\) .
Then for all
ε positive real number > greater than 0 zero
\(
ε\gt 0
\)
there exists N integer \( N \) such that
‖ C Cesàro mean n integer ( f function ) - minus f function ‖ ∞ infinity < less than ε positive real number
\(
\mathopen{}\left\lVert{}{C}_{n}\mathopen{}\left( f\right)\mathclose{}-f\right\rVert\mathclose{}_{\infty}\lt ε
\)
for all
n integer > greater than N integer
\(
n\gt N
\)
and all
f function ∈ element of F family of functions
\(
f\in F
\) ;
in particular,
C Cesàro mean n integer ( f function ) → converges to f function
\(
{C}_{n}\mathopen{}\left( f\right)\mathclose{} \to f
\)
uniformly for all
f function ∈ element of C space of continuous functions ( [ interval 0 zero , 1 one ] interval )
\(
f\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\) .
See for instance Chapter 5 of Young [12 ] for the proof in the
standard situation of a single
2 two times π \( 2π \) -periodic function g function \( g \)
on R real numbers \( \mathbb{R} \) and its usual Fourier series, then rescale and specialize to even g function \( g \) . The extension to bounded, equicontinuous families follows effortlessly from the observation that the upper estimates in the proof depend only on
‖ g function ‖ ∞ infinity
\(
\mathopen{}\left\lVert{}g\right\rVert\mathclose{}_{\infty}
\)
and
| modulus g function ( x real number ) - minus g function ( y real number ) | modulus
\(
\mathopen{}\left\lvert{}g\mathopen{}\left( x\right)\mathclose{}-g\mathopen{}\left( y\right)\mathclose{}\right\rvert\mathclose{}
\)
for small
| modulus x real number - minus y real number | modulus
\(
\mathopen{}\left\lvert{}x-y\right\rvert\mathclose{}
\) .
Theorem III.42
Suppose
T trace-class operator ∈ element of 𝒯 trace-class operators ( H Hilbert space )
\(
T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{}
\)
has the form
T trace-class operator ( f function ( x real number ) ) = equals ∫ integral 0 zero 1 one
τ continuous function ( x real number t real number ) times f function ( t real number )
d t real number
\[
T\mathopen{}\left( f\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}= \int _{0}^{1}{}
τ\mathopen{}\left( x, t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{}
\,\mathrm{d}t
\] for some continuous τ continuous function \( τ \) on
[ interval 0 zero , 1 one ] interval
2 two
\(
{\mathopen{}\left[0, 1\right]\mathclose{}}^{2}
\)
(i.e. T trace-class operator \( T \) is a trace-class integral
operator with continuous kernel). Then
Tr trace ( T trace-class operator ) = equals ∫ integral 0 zero 1 one τ continuous function ( x real number x real number ) d x real number
\(
\operatorname{Tr}\mathopen{}\left( T\right)\mathclose{}= \int _{0}^{1}{}τ\mathopen{}\left( x, x\right)\mathclose{}\,\mathrm{d}x
\) .
This proof is taken from Gohberg [3 ] . With
( sequence e unit vector n integer ) sequence n integer = 0 zero ∞ infinity
\(
\mathopen{}\left({e}_{n}\right)\mathclose{}_{n=0}^{\infty}
\)
the cosine basis as above,
Tr trace ( T trace-class operator ) = equals ∑ summation n integer
〈 T trace-class operator ( e unit vector n integer ) , e unit vector n integer 〉
\(
\operatorname{Tr}\mathopen{}\left( T\right)\mathclose{}= \sum_{n}{}
\mathopen{}\left\langle{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}, {e}_{n}\right\rangle\mathclose{}
\) ,
which is the limit of the sequence of Cesàro means. Then, with
τ continuous function x real number ∈ element of C space of continuous functions ( [ interval 0 zero , 1 one ] interval )
\(
{τ}_{x}\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\)
defined by
τ continuous function x real number ( t real number ) = equals τ continuous function ( x real number t real number )
\(
{τ}_{x}\mathopen{}\left( t\right)\mathclose{}= τ\mathopen{}\left( x, t\right)\mathclose{}
\) ,
〈 T trace-class operator ( e unit vector n integer ) , e unit vector n integer 〉 = equals ∫ integral 0 zero 1 one
( T trace-class operator ( e unit vector n integer ) ) ( x real number ) times e unit vector n integer ( x real number )
d x real number = equals ∫ integral 0 zero 1 one
∫ integral 0 zero 1 one
τ continuous function ( x real number t real number ) times e unit vector n integer ( t real number ) times e unit vector n integer ( x real number )
d t real number
d x real number = equals ∫ integral 0 zero 1 one
( 〈 τ continuous function x real number , e unit vector n integer 〉 times e unit vector n integer ) ( x real number )
d x real number
.
\[
\mathopen{}\left\langle{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}, {e}_{n}\right\rangle\mathclose{}= \int _{0}^{1}{}
\mathopen{}\left(T\mathopen{}\left( {e}_{n}\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}{e}_{n}\mathopen{}\left( x\right)\mathclose{}
\,\mathrm{d}x= \int _{0}^{1}{}
\int _{0}^{1}{}
τ\mathopen{}\left( x, t\right)\mathclose{}{e}_{n}\mathopen{}\left( t\right)\mathclose{}{e}_{n}\mathopen{}\left( x\right)\mathclose{}
\,\mathrm{d}t
\,\mathrm{d}x= \int _{0}^{1}{}
\mathopen{}\left(\mathopen{}\left\langle{}{τ}_{x}, {e}_{n}\right\rangle\mathclose{}{e}_{n}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}
\,\mathrm{d}x
\text{.}
\]
Let
A Cesàro mean n integer
\(
{A}_{n}
\)
be the n integer \( n \) th Cesàro mean of
∑ summation
〈 T trace-class operator ( e unit vector n integer ) , e unit vector n integer 〉
\(
\sum{}
\mathopen{}\left\langle{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}, {e}_{n}\right\rangle\mathclose{}
\)
so that
A Cesàro mean n integer → converges to Tr trace ( T trace-class operator )
\(
{A}_{n} \to \operatorname{Tr}\mathopen{}\left( T\right)\mathclose{}
\) .
Then
A Cesàro mean n integer = equals ∫ integral 0 zero 1 one
( C Cesàro mean n integer ( τ continuous function x real number ) ) ( x real number )
d x real number
\(
{A}_{n}= \int _{0}^{1}{}
\mathopen{}\left({C}_{n}\mathopen{}\left( {τ}_{x}\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}
\,\mathrm{d}x
\)
and
| modulus A Cesàro mean n integer - minus ∫ integral 0 zero 1 one τ continuous function ( x real number x real number ) d x real number | modulus = equals | modulus ∫ integral 0 zero 1 one
( ( C Cesàro mean n integer ( τ continuous function x real number ) ) ( x real number ) - minus τ continuous function x real number ( x real number ) )
d x real number | modulus ≤ less than or equal to ∫ integral 0 zero 1 one
‖ C Cesàro mean n integer ( τ continuous function x real number ) - minus τ continuous function x real number ‖ ∞ infinity
d x real number ≤ less than or equal to sup supremum x real number
‖ C Cesàro mean n integer ( τ continuous function x real number ) - minus τ continuous function x real number ‖
→ converges to 0 zero
\[
\mathopen{}\left\lvert{}{A}_{n}-\int _{0}^{1}{}τ\mathopen{}\left( x, x\right)\mathclose{}\,\mathrm{d}x\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\int _{0}^{1}{}
\mathopen{}\left(\mathopen{}\left({C}_{n}\mathopen{}\left( {τ}_{x}\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}-{τ}_{x}\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}
\,\mathrm{d}x\right\rvert\mathclose{}\leq \int _{0}^{1}{}
\mathopen{}\left\lVert{}{C}_{n}\mathopen{}\left( {τ}_{x}\right)\mathclose{}-{τ}_{x}\right\rVert\mathclose{}_{\infty}
\,\mathrm{d}x\leq \sup_{x}{}
\mathopen{}\left\lVert{}{C}_{n}\mathopen{}\left( {τ}_{x}\right)\mathclose{}-{τ}_{x}\right\rVert\mathclose{}
\to 0
\] by Fejer for Families because
F = equals { set τ continuous function x real number | such that
x real number ∈ element of [ interval 0 zero , 1 one ] interval
} set
\(
F= \mathopen{}\left\{\, {τ}_{x}\,\middle\vert\,
, x\in \mathopen{}\left[0, 1\right]\mathclose{},
\,\right\}\mathclose{}
\)
is uniformly
bounded, and also equicontinuous because of the uniform continuity of τ continuous function \( τ \) .
In particular, if S Volterra operator \( S \) is the Volterra operator, then
Tr trace ( S Volterra operator 2 two ) = equals 0 zero
\(
\operatorname{Tr}\mathopen{}\left( {S}^{2}\right)\mathclose{}= 0
\) .
Corollary III.43
For any
r function ∈ element of C space of continuous functions ( [ interval 0 zero , 1 one ] interval )
\(
r\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\) ,
the operator T trace-class operator \( T \) defined by
( T trace-class operator ( f function ) ) ( x real number ) = equals ∫ integral 0 zero x real number
( x real number - minus t real number ) times f function ( t real number ) times r function ( t real number )
d t real number
\[
\mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}= \int _{0}^{x}{}
\mathopen{}\left(x-t\right)\mathclose{}f\mathopen{}\left( t\right)\mathclose{}r\mathopen{}\left( t\right)\mathclose{}
\,\mathrm{d}t
\] is trace-class and
Tr trace ( T trace-class operator ) = equals 0 zero
\(
\operatorname{Tr}\mathopen{}\left( T\right)\mathclose{}= 0
\) .
If S Volterra operator \( S \) is the Volterra operator, and
M r function multiplication operator r function
\(
\mathrm{M}_{r}
\)
denotes multiplication by r function \( r \) , then
T trace-class operator = equals S Volterra operator 2 two ∘ composition M r function multiplication operator r function ∈ element of 𝒯 trace-class operators ( H Hilbert space )
\(
T= {S}^{2}\circ \mathrm{M}_{r}\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{}
\) .
The kernel of T trace-class operator \( T \) is just
τ function ( x real number t real number ) times r function ( t real number )
\(
τ\mathopen{}\left( x, t\right)\mathclose{}r\mathopen{}\left( t\right)\mathclose{}
\) ,
which is 0 zero \( 0 \) on the diagonal.