Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

C. Invertible Operators

In what follows, let EBanach space\( E \) be a Banach space.

Definition II.29

Denote by bounded linear operators(EBanach space)1invertible elements \( {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \) the set of invertible operators in bounded linear operators(EBanach space) \( \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \).

We remark that all of the results (except for those specifically for operators on Hilbert space) in this and the next two sections are valid, with essentially the same proofs, in the more general setting of a Banach algebra (i.e., a complete normed algebra) with multiplicative unit. Here, the unit is Iidentity operator\( \mathrm{I} \), the identity operator on EBanach space\( E \).

Theorem II.30

If Aoperatorelement ofbounded linear operators(EBanach space) \( A\in \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \) and Iidentity operator-minusAoperator<less than1one \( \mathopen{}\left\lVert{}\mathrm{I}-A\right\rVert\mathclose{}\lt 1 \), then Aoperatorelement ofbounded linear operators(EBanach space)1invertible elements \( A\in {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \), and Iidentity operator-minusAoperator1inverseless than or equal to Iidentity operator-minusAoperator (1one-minusIidentity operator-minusAoperator) \( \mathopen{}\left\lVert{}\mathrm{I}-{A}^{-1}\right\rVert\mathclose{}\leq \frac{\mathopen{}\left\lVert{}\mathrm{I}-A\right\rVert\mathclose{}}{\mathopen{}\left(1-\mathopen{}\left\lVert{}\mathrm{I}-A\right\rVert\mathclose{}\right)\mathclose{}} \).

Proof. Notice that summationninteger=0zeroinfinity(Iidentity operator-minusAoperator)nintegerless than or equal tosummationninteger=0zeroinfinityIidentity operator-minusAoperatorninteger<less thaninfinity \( \sum_{n=0}^{\infty}{}\mathopen{}\left\lVert{}{\mathopen{}\left(\mathrm{I}-A\right)\mathclose{}}^{n}\right\rVert\mathclose{}\leq \sum_{n=0}^{\infty}{}{\mathopen{}\left\lVert{}\mathrm{I}-A\right\rVert\mathclose{}}^{n}\lt \infty \). Because bounded linear operators(EBanach space) \( \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \) is complete, this means the series summationninteger=0zeroinfinity(Iidentity operator-minusAoperator)ninteger \( \sum_{n=0}^{\infty}{}{\mathopen{}\left(\mathrm{I}-A\right)\mathclose{}}^{n} \) converges in bounded linear operators(EBanach space) \( \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \). Call the sum Tlinear map\( T \). Then (Iidentity operator-minusAoperator)timesTlinear map=equalsTlinear map-minusIidentity operator \( \mathopen{}\left(\mathrm{I}-A\right)\mathclose{}T= T-\mathrm{I} \), so AoperatortimesTlinear map=equalsIidentity operator \( AT= \mathrm{I} \), and likewise Tlinear maptimesAoperator=equalsIidentity operator \( TA= \mathrm{I} \). We have Iidentity operator-minusAoperator1inverse=equalsIidentity operator-minusTlinear map=equalssummationninteger=1oneinfinity(Iidentity operator-minusAoperator)nintegerless than or equal tosummationninteger=1oneinfinity (Iidentity operator-minusAoperator)ninteger =equals Iidentity operator-minusAoperator (1one-minusIidentity operator-minusAoperator) . \[ \mathopen{}\left\lVert{}\mathrm{I}-{A}^{-1}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}\mathrm{I}-T\right\rVert\mathclose{}= \mathopen{}\left\lVert{}\sum_{n=1}^{\infty}{}{\mathopen{}\left(\mathrm{I}-A\right)\mathclose{}}^{n}\right\rVert\mathclose{}\leq \sum_{n=1}^{\infty}{} {\mathopen{}\left\lVert{}\mathopen{}\left(\mathrm{I}-A\right)\mathclose{}\right\rVert\mathclose{}}^{n} = \frac{\mathopen{}\left\lVert{}\mathrm{I}-A\right\rVert\mathclose{}}{\mathopen{}\left(1-\mathopen{}\left\lVert{}\mathrm{I}-A\right\rVert\mathclose{}\right)\mathclose{}} \text{.} \]

Corollary II.31

The set of invertible operators bounded linear operators(EBanach space)1invertible elements\( {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \) is an open subset of bounded linear operators(EBanach space) \( \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \).

Proof. If Boperatorelement ofbounded linear operators(EBanach space)1invertible elements \( B\in {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \), Aoperatorelement ofbounded linear operators(EBanach space) \( A\in \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \), and Aoperator-minusBoperatorless than or equal to1oneBoperator1inverse \( \mathopen{}\left\lVert{}A-B\right\rVert\mathclose{}\leq \frac{1}{\mathopen{}\left\lVert{}{B}^{-1}\right\rVert\mathclose{}} \), then Aoperatorelement ofbounded linear operators(EBanach space)1invertible elements \( A\in {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \), since AoperatortimesBoperator1inverse-minusIless than or equal toAoperator-minusBoperatortimesBoperator1inverse<less than1one \( \mathopen{}\left\lVert{}A{B}^{-1}-I\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}A-B\right\rVert\mathclose{}\mathopen{}\left\lVert{}{B}^{-1}\right\rVert\mathclose{}\lt 1 \), so AoperatortimesBoperator1inverseelement ofbounded linear operators(EBanach space)1invertible elements \( A{B}^{-1}\in {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \), so Aoperatorelement ofbounded linear operators(EBanach space)1invertible elements\( A\in {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \).

Corollary II.32

The inversion map Aoperatoris mapped toAoperator1inverse \( A\mapsto {A}^{-1} \) is continuous from bounded linear operators(EBanach space)1invertible elements\( {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \) to itself.

Proof. The norm inequality in Theorem II.30 shows that inversion is continuous at Iidentity operator\( \mathrm{I} \). If (sequenceAoperator)sequenceninteger \( \mathopen{}\left(A\right)\mathclose{}_{n} \) is a sequence in bounded linear operators(EBanach space)1invertible elements\( {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \) converging to Aoperator\( A \) in bounded linear operators(EBanach space)1invertible elements\( {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \), then AoperatornintegertimesAoperator1inverseconverges toIidentity operator \( {A}_{n}{A}^{-1} \to \mathrm{I} \), so AoperatortimesAoperatorninteger1inverseconverges toIidentity operator \( A{A}_{n}^{-1} \to \mathrm{I} \) (by continuity at Iidentity operator\( \mathrm{I} \)), so Aoperatorninteger1inverseconverges toAoperator1inverse \( {A}_{n}^{-1} \to {A}^{-1} \).

Definition II.33

The spectrum of Aoperatorelement ofbounded linear operators(EBanach space) \( A\in \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \) is σspectrum(Aoperator)=equals{setλcomplex numberelement ofCcomplex numbers|such thatλcomplex numbertimesIidentity operator-minusAoperatornot an element ofbounded linear operators(EBanach space)1invertible elements}set . \[ \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{}= \mathopen{}\left\{\, λ\in \mathbb{C}\,\middle\vert\, λ\mathrm{I}-A\notin {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1}\,\right\}\mathclose{} \text{.} \]

In the finite-dimensional case, λcomplex numbertimesIidentity operator-minusAoperator \( λ\mathrm{I}-A \) is invertible if and only if Kerkernel(λcomplex numbertimesIidentity operator-minusAoperator)=equals{set0zero}set \( \operatorname{Ker}\mathopen{}\left( λ\mathrm{I}-A\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \) (use rank + nullity argument). Then σ(Aoperator)\( \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{} \) is the set of eigenvalues. In general, every eigenvalue is in the spectrum. However, the converse does not hold in infinite dimensions.

Example II.34

Let EBanach space=equalsl2 \( E= \mathrm{l}^{0} \) and consider the right shift operator Rshift operator(xvector1onexvector2two)=equals(0zero, xvector1one, xvector2two, ). \[ R\mathopen{}\left( {x}_{1}, {x}_{2}, \dotsc\right)\mathclose{}= \mathopen{}\left(0, {x}_{1}, {x}_{2}, \dotsc\right)\mathclose{}\text{.} \] Suppose Rshift operator(xvector)=equalsλcomplex numbertimesxvector \( R\mathopen{}\left( \mathbf{x}\right)\mathclose{}= λ\mathbf{x} \), λcomplex numberelement ofCcomplex numbers \( λ\in \mathbb{C} \), xvectorelement ofEBanach space \( \mathbf{x}\in E \). Then λcomplex numbertimesxvector1one=equals0zero \( λ{x}_{1}= 0 \), λcomplex numbertimesxvector2two=equalsxvector1one \( λ{x}_{2}= {x}_{1} \), λcomplex numbertimesxvectoriinteger=equalsxvectoriinteger-minus1one \( λ{x}_{i}= {x}_{i-1} \), which means xvector=equals0vector \( \mathbf{x}= \mathbf{0} \). So, there are no eigenvalues. However, 0zeroelement ofσ(Rshift operator) \( 0\in \mathop{\sigma}\mathopen{}\left( R\right)\mathclose{} \) since Rshift operator\( R \) is not invertible. It turns out that σ(Rshift operator)=equals{setzelement ofCcomplex numbers|such that|modulusz|modulusless than or equal to1one}set \( \mathop{\sigma}\mathopen{}\left( R\right)\mathclose{}= \mathopen{}\left\{\, z\in \mathbb{C}\,\middle\vert\, \mathopen{}\left\lvert{}z\right\rvert\mathclose{}\leq 1\,\right\}\mathclose{} \).

Theorem II.35

For Aoperatorelement ofbounded linear operators(EBanach space) \( A\in \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \), σ(Aoperator)\( \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{} \) is closed and bounded. Moreover, σ(Aoperator)subset{setλcomplex numberelement ofCcomplex numbers|such that|modulusλcomplex number|modulusless than or equal toAoperator}set \( \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{}\subseteq \mathopen{}\left\{\, λ\in \mathbb{C}\,\middle\vert\, \mathopen{}\left\lvert{}λ\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}A\right\rVert\mathclose{}\,\right\}\mathclose{} \). In particular, σ(Aoperator)\( \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{} \) is compact.

Proof. Consider the continuous function Fcontinuous function:mapsCcomplex numberstobounded linear operators(EBanach space) \( F : \mathbb{C} \to \mathcal{L}\mathopen{}\left( E\right)\mathclose{} \) defined by Fcontinuous function(λcomplex number)=equalsλcomplex numbertimesI-minusAoperator \( F\mathopen{}\left( λ\right)\mathclose{}= λI-A \). By definition, σ(Aoperator)=equalsFcontinuous function1inverse(bounded linear operators(EBanach space)set differencebounded linear operators(EBanach space)1invertible elements) \( \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{}= {F}^{-1}\mathopen{}\left( \mathcal{L}\mathopen{}\left( E\right)\mathclose{}\setminus {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1}\right)\mathclose{} \). However, bounded linear operators(EBanach space)1invertible elements\( {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \) is open, so bounded linear operators(EBanach space)set differencebounded linear operators(EBanach space)1invertible elements \( \mathcal{L}\mathopen{}\left( E\right)\mathclose{}\setminus {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \) is closed. Thus, because Fcontinuous function\( F \) is continuous, σ(Aoperator)\( \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{} \) is closed. To show it is bounded, note |modulusμmeasure|modulus>greater thanAoperator \( \mathopen{}\left\lvert{}μ\right\rvert\mathclose{}\gt \mathopen{}\left\lVert{}A\right\rVert\mathclose{} \) if and only if 1oneμmeasuretimesAoperator<less than1one \( \mathopen{}\left\lVert{}\frac{1}{μ}A\right\rVert\mathclose{}\lt 1 \). Thus I-minus1oneμmeasuretimesAoperatorelement ofbounded linear operators(EBanach space)1invertible elements \( I-\frac{1}{μ}A\in {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \) if and only if μmeasuretimesI-minusAoperatorelement ofbounded linear operators(EBanach space)1invertible elements \( μI-A\in {\mathcal{L}\mathopen{}\left( E\right)\mathclose{}}^{-1} \) if and only if μmeasurenot an element ofσ(Aoperator) \( μ\notin \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{} \). That is, σ(Aoperator)subset{setλcomplex number|such that |modulusλcomplex number|modulusless than or equal toAoperator }set \( \mathop{\sigma}\mathopen{}\left( A\right)\mathclose{}\subseteq \mathopen{}\left\{\, λ\,\middle\vert\, , \mathopen{}\left\lvert{}λ\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}A\right\rVert\mathclose{}, \,\right\}\mathclose{} \).

Example II.36

Consider L2Lebesgue space([intervalareal number, breal number]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[a, b\right]\mathclose{}\right)\mathclose{} \) and ffunctionelement ofCspace of continuous functions([intervalareal number, breal number]interval) \( f\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[a, b\right]\mathclose{}\right)\mathclose{} \). Define Mffunctionmultiplication operatorffunction(xvector(treal number)) \( \mathrm{M}_{f}\mathopen{}\left( x\mathopen{}\left( t\right)\mathclose{}\right)\mathclose{} \) to be ffunction(treal number)timesxvector(treal number) \( f\mathopen{}\left( t\right)\mathclose{}x\mathopen{}\left( t\right)\mathclose{} \). We claim σ(Mffunctionmultiplication operatorffunction)=equalsffunction([intervalareal number, breal number]interval) \( \mathop{\sigma}\mathopen{}\left( \mathrm{M}_{f}\right)\mathclose{}= f\mathopen{}\left( \mathopen{}\left[a, b\right]\mathclose{}\right)\mathclose{} \). If λcomplex numbernot an element offfunction([intervalareal number, breal number]interval) \( λ\notin f\mathopen{}\left( \mathopen{}\left[a, b\right]\mathclose{}\right)\mathclose{} \), then the continuous function λcomplex number-minusffunction \( λ-f \) has a reciprocal, so λcomplex numbertimesI-minusMffunctionmultiplication operatorffunction=equalsM(λcomplex number-minusffunction)multiplication operator(λcomplex number-ffunction) \( λI-\mathrm{M}_{f}= \mathrm{M}_{\mathopen{}\left(λ-f\right)\mathclose{}} \) is invertible, that is λcomplex numbernot an element ofσ(Mffunctionmultiplication operatorffunction) \( λ\notin \mathop{\sigma}\mathopen{}\left( \mathrm{M}_{f}\right)\mathclose{} \). Conversely, if λcomplex number=equalsffunction(treal number0zero) \( λ= f\mathopen{}\left( {t}_{0}\right)\mathclose{} \) for treal number0zeroelement of[intervalareal number, breal number]interval \( {t}_{0}\in \mathopen{}\left[a, b\right]\mathclose{} \), define Jsetninteger=equals{settreal numberelement of[intervalareal number, breal number]interval|such that |modulusffunction(treal number)-minusλcomplex number|modulus<less than1oneninteger }set \( {J}_{n}= \mathopen{}\left\{\, t\in \mathopen{}\left[a, b\right]\mathclose{}\,\middle\vert\, , \mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}-λ\right\rvert\mathclose{}\lt \frac{1}{n}, \,\right\}\mathclose{} \). Let δpositive real numberninteger\( {δ}_{n} \) be the measure of this set. Consider ggroup elementninteger(treal number)element ofL2Lebesgue space \( {g}_{n}\mathopen{}\left( t\right)\mathclose{}\in \mathrm{L}^{\mathrm{2}} \) given by ggroup elementninteger(treal number)=equals{cases 1one δpositive real numberninteger , treal numberelement ofJsetninteger ; 0zero, treal numbernot an element ofJsetninteger. } \[ {g}_{n}\mathopen{}\left( t\right)\mathclose{}= \begin{cases}\frac{1}{\sqrt{{δ}_{n}}}, & t\in {J}_{n} ; \\ 0, & t\notin {J}_{n}\text{.} \end{cases} \] This makes ggroup elementninteger=equals1one \( \mathopen{}\left\lVert{}{g}_{n}\right\rVert\mathclose{}= 1 \). Suppose Tlinear map=equals(λcomplex numbertimesI-minusMffunctionmultiplication operatorffunction)1inverse \( T= {\mathopen{}\left(λI-\mathrm{M}_{f}\right)\mathclose{}}^{-1} \). Then (λcomplex numbertimesI-minusMffunctionmultiplication operatorffunction)timesggroup elementninteger=equals{cases λcomplex number-minusffunction(treal number) δpositive real numberninteger , treal numberelement ofJsetninteger ; 0zero, treal numbernot an element ofJsetninteger. } \[ \mathopen{}\left(λI-\mathrm{M}_{f}\right)\mathclose{}{g}_{n}= \begin{cases}\frac{λ-f\mathopen{}\left( t\right)\mathclose{}}{\sqrt{{δ}_{n}}}, & t\in {J}_{n} ; \\ 0, & t\notin {J}_{n}\text{.} \end{cases} \] Thus (λcomplex numbertimesI-minusMffunctionmultiplication operatorffunction)timesggroup elementninteger 2two less than or equal to μmeasure(Jsetninteger) ninteger2twotimesδpositive real numberninteger =equals1oneninteger2two \( {\mathopen{}\left\lVert{}\mathopen{}\left(λI-\mathrm{M}_{f}\right)\mathclose{}{g}_{n}\right\rVert\mathclose{}}^{2}\leq \frac{μ\mathopen{}\left( {J}_{n}\right)\mathclose{}}{{n}^{2}{δ}_{n}}= \frac{1}{{n}^{2}} \). An operator that takes a sequence of unit vectors to 0 cannot have a bounded inverse, so λcomplex numberelement ofσ(Mffunctionmultiplication operatorffunction) \( λ\in \mathop{\sigma}\mathopen{}\left( \mathrm{M}_{f}\right)\mathclose{} \).

Notation II.37

Unless otherwise specified, in what follows, HHilbert space\( H \) is a Hilbert space. Write λcomplex number=equalsλcomplex numbertimesI \( λ= λI \) for λcomplex numberelement ofCcomplex numbers \( λ\in \mathbb{C} \).

Proposition II.38

For Toperator\( T \) and Soperator\( S \) in bounded linear operators(HHilbert space) \( \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \), we have

  1. (ToperatortimesSoperator)*=equalsSoperator*timesToperator* \( \mathopen{}\left(TS\right)\mathclose{}^{*}= S^{*} T^{*} \).
  2. Soperatorelement of bounded linear operators(HHilbert space) 1invertible elements \( S\in { \mathcal{L}\mathopen{}\left( H\right)\mathclose{} }^{-1} \) implies Soperator*element of bounded linear operators(HHilbert space) 1invertible elements \( S^{*}\in { \mathcal{L}\mathopen{}\left( H\right)\mathclose{} }^{-1} \) with (Soperator*)1inverse=equals(Soperator1inverse)* \( {\mathopen{}\left( S^{*}\right)\mathclose{}}^{-1}= \mathopen{}\left({S}^{-1}\right)\mathclose{}^{*} \).
  3. σ(Toperator*)=equalsσ(Toperator)¯ \( \mathop{\sigma}\mathopen{}\left( T^{*}\right)\mathclose{}= \overline{\mathop{\sigma}\mathopen{}\left( T\right)\mathclose{}} \).

Proof.

  1. (ToperatortimesSoperator)*(xvector), yvector=equalsxvector, Toperator(Soperator(yvector))=equalsToperator*(xvector), Soperator(yvector)=equalsSoperator*(Toperator*(xvector)), yvector \( \mathopen{}\left\langle{} \mathopen{}\left(TS\right)\mathclose{}^{*}\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, T\mathopen{}\left( S\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{} T^{*}\mathopen{}\left( x\right)\mathclose{}, S\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{} S^{*}\mathopen{}\left( T^{*}\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}, y\right\rangle\mathclose{} \).
  2. SoperatortimesSoperator1inverse=equalsI=equalsSoperator1inversetimesSoperator \( S{S}^{-1}= I= {S}^{-1}S \) implies (Soperator1inverse)*timesSoperator*=equalsI*=equalsI=equalsSoperator*times(Soperator1inverse)* \( \mathopen{}\left({S}^{-1}\right)\mathclose{}^{*} S^{*}= I^{*}= I= S^{*} \mathopen{}\left({S}^{-1}\right)\mathclose{}^{*} \).
  3. For λcomplex numbernot an element ofσ(Toperator) \( λ\notin \mathop{\sigma}\mathopen{}\left( T\right)\mathclose{} \), (λcomplex number¯complex conjugate-minusToperator*)1inverse=equals((λcomplex number-minusToperator)1inverse)* \( {\mathopen{}\left(\overline{λ}- T^{*}\right)\mathclose{}}^{-1}= \mathopen{}\left({\mathopen{}\left(λ-T\right)\mathclose{}}^{-1}\right)\mathclose{}^{*} \), so λcomplex number¯complex conjugatenot an element ofσ(Toperator*) \( \overline{λ}\notin \mathop{\sigma}\mathopen{}\left( T^{*}\right)\mathclose{} \) and vice versa.

Example II.39

Let Sshift operator\( S \) be the unilateral shift on l2lebesgue space\( \mathrm{l}^{2} \). Then σ(Sshift operator)\( \mathop{\sigma}\mathopen{}\left( S\right)\mathclose{} \) is the closed unit disc with a proof sketch as follows: For |modulusλcomplex number|modulus<less than1one \( \mathopen{}\left\lvert{}λ\right\rvert\mathclose{}\lt 1 \), notice ξvectorλcomplex number=equals(tuple1one, λcomplex number, λcomplex number2two, )tupleelement ofl2lebesgue space \( {\mathbf{ξ}}_{λ}= \mathopen{}\left(1, λ, {λ}^{2}, \dotsc\right)\mathclose{}\in \mathrm{l}^{2} \) and Sshift operator*(ξvectorλcomplex number)=equals(tupleλcomplex number, λcomplex number2two, )tuple=equalsλcomplex numbertimesξvectorλcomplex number \( S^{*}\mathopen{}\left( {\mathbf{ξ}}_{λ}\right)\mathclose{}= \mathopen{}\left(λ, {λ}^{2}, \dotsc\right)\mathclose{}= λ{\mathbf{ξ}}_{λ} \). So, the open unit disc is contained in σ(Sshift operator*) \( \mathop{\sigma}\mathopen{}\left( S^{*}\right)\mathclose{} \). Then σ(Sshift operator*) \( \mathop{\sigma}\mathopen{}\left( S^{*}\right)\mathclose{} \) is the closed unit disc and so σ(Sshift operator)\( \mathop{\sigma}\mathopen{}\left( S\right)\mathclose{} \) is also the closed unit disk.


Previous: Adjoints back to top Next: Non-Emptiness of the Spectrum