Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

D. Non-Emptiness of the Spectrum

Proposition II.40

Let Tlinear mapelement ofbounded linear operators(Xnormed linear space) \( T\in \mathcal{L}\mathopen{}\left( X\right)\mathclose{} \). Then

  1. for λcomplex number0zeroelement ofCcomplex numbersset differenceσ(Tlinear map) \( {λ}_{0}\in \mathbb{C}\setminus \mathop{\sigma}\mathopen{}\left( T\right)\mathclose{} \) we have limlimitλcomplex numberλcomplex number0zero 1oneλcomplex number-minusλcomplex number0zero times( (λcomplex number-minusTlinear map) 1inverse-minus(λcomplex number0zero-minusTlinear map1inverse)) =equals (λcomplex number0zero-minusTlinear map) 2two \[ \lim_{λ\to{λ}_{0}}{} \frac{1}{λ-{λ}_{0}}\mathopen{}\left({ \mathopen{}\left(λ-T\right)\mathclose{} }^{-1}-\mathopen{}\left({λ}_{0}-{T}^{-1}\right)\mathclose{}\right)\mathclose{} = {-} {\mathopen{}\left({λ}_{0}-T\right)\mathclose{}}^{{-}2} \]
  2. limlimit|modulusλcomplex number|modulusinfinity (λcomplex number-minusTlinear map)1inverse =equals0zero \( \lim_{\mathopen{}\left\lvert{}λ\right\rvert\mathclose{}\to\infty}{} {\mathopen{}\left(λ-T\right)\mathclose{}}^{-1} = 0 \).

Proof.

  1. Note that (λcomplex number-minusTlinear map)1inverse-minus (λcomplex number0zero-minusTlinear map) 1inverse=equals(λcomplex number-minusTlinear map)1inversetimes((λcomplex number0zero-minusTlinear map)-minus(λcomplex number-minusTlinear map))times (λcomplex number0zero-minusTlinear map) 1inverse=equals(λcomplex number0zero-minusλcomplex number)times(λcomplex number-minusTlinear map)1inversetimes (λcomplex number0zero-minusTlinear map) 1inverse, \[ {\mathopen{}\left(λ-T\right)\mathclose{}}^{-1}-{ \mathopen{}\left({λ}_{0}-T\right)\mathclose{} }^{-1}= {\mathopen{}\left(λ-T\right)\mathclose{}}^{-1}\mathopen{}\left(\mathopen{}\left({λ}_{0}-T\right)\mathclose{}-\mathopen{}\left(λ-T\right)\mathclose{}\right)\mathclose{}{ \mathopen{}\left({λ}_{0}-T\right)\mathclose{} }^{-1}= \mathopen{}\left({λ}_{0}-λ\right)\mathclose{}{\mathopen{}\left(λ-T\right)\mathclose{}}^{-1}{ \mathopen{}\left({λ}_{0}-T\right)\mathclose{} }^{-1}\text{,} \] divide by λcomplex number-minusλcomplex number0zero \( λ-{λ}_{0} \) and use continuity of inversion.
  2. For |modulusλcomplex number|modulus>greater thanTlinear map \( \mathopen{}\left\lvert{}λ\right\rvert\mathclose{}\gt \mathopen{}\left\lVert{}T\right\rVert\mathclose{} \), (λcomplex number-minusTlinear map)1inverse=equals (λcomplex numbertimes(1one-minus1oneλcomplex numbertimesTlinear map)) 1inverse=equals1oneλcomplex numbertimes (1one-minus1oneλcomplex number1onetimesTlinear map) 1inverse \( {\mathopen{}\left(λ-T\right)\mathclose{}}^{-1}= { \mathopen{}\left(λ\mathopen{}\left(1-\frac{1}{λ}T\right)\mathclose{}\right)\mathclose{} }^{-1}= \frac{1}{λ}{ \mathopen{}\left(1-\frac{1}{{λ}_{1}}T\right)\mathclose{} }^{-1} \). Then (λcomplex number-minusTlinear map)1inverse=equals1one|modulusλcomplex number|modulustimes (1one-minus1oneλcomplex numbertimesTlinear map) 1inverseless than or equal to1one|modulusλcomplex number|modulustimes 1one 1one-minusTlinear mapλcomplex number =equals 1one |modulusλcomplex number|modulus-minusTlinear map . \[ \mathopen{}\left\lVert{}{\mathopen{}\left(λ-T\right)\mathclose{}}^{-1}\right\rVert\mathclose{}= \frac{1}{\mathopen{}\left\lvert{}λ\right\rvert\mathclose{}}\mathopen{}\left\lVert{}{ \mathopen{}\left(1-\frac{1}{λ}T\right)\mathclose{} }^{-1}\right\rVert\mathclose{}\leq \frac{1}{\mathopen{}\left\lvert{}λ\right\rvert\mathclose{}}\frac{1}{1-\frac{\mathopen{}\left\lVert{}T\right\rVert\mathclose{}}{\mathopen{}\left\lVert{}λ\right\rVert\mathclose{}}}= \frac{1}{\mathopen{}\left\lvert{}λ\right\rvert\mathclose{}-\mathopen{}\left\lVert{}T\right\rVert\mathclose{}} \text{.} \]

Our proof that the spectrum of a bounded operator is always non-empty uses Liouville's Theorem and the Hahn-Banach Theorem, specifically the consequence of the latter asserting that the intersection of the kernels of all the bounded linear functionals on a normed linear space is {set0zero}set \( \mathopen{}\left\{\, 0\,\right\}\mathclose{} \).

Theorem II.41

The spectrum σ(Tlinear map)\( \mathop{\sigma}\mathopen{}\left( T\right)\mathclose{} \) is nonempty for every Tlinear mapelement ofbounded linear operators(Xnormed linear space) \( T\in \mathcal{L}\mathopen{}\left( X\right)\mathclose{} \).

Proof. Suppose Tlinear mapelement ofbounded linear operators(Xnormed linear space) \( T\in \mathcal{L}\mathopen{}\left( X\right)\mathclose{} \) has empty spectrum. That is, λcomplex number-minusTlinear mapelement of bounded linear operators(Xnormed linear space) 1invertible elements \( λ-T\in { \mathcal{L}\mathopen{}\left( X\right)\mathclose{} }^{-1} \) for all λcomplex numberelement ofCcomplex numbers \( λ\in \mathbb{C} \). Take φfunctionelement ofbounded linear operators(Xnormed linear space)* \( φ\in {\mathcal{L}\mathopen{}\left( X\right)\mathclose{}}^{*} \) and consider ffunction(λcomplex number)=equalsφfunction( (λcomplex number-minusTlinear map) 1inverse) \( f\mathopen{}\left( λ\right)\mathclose{}= φ\mathopen{}\left( { \mathopen{}\left(λ-T\right)\mathclose{} }^{-1}\right)\mathclose{} \). It follows from Proposition II.40 and the continuity of φfunction\( φ \) that ffunction\( f \) is analytic on Ccomplex numbers\( \mathbb{C} \) (with derivative ffunctionderivative(λcomplex number)=equals φfunction( (λcomplex number-minusTlinear map) 2two ) \( f' \mathopen{}\left( λ\right)\mathclose{}= {-} φ\mathopen{}\left( {\mathopen{}\left(λ-T\right)\mathclose{}}^{{-}2}\right)\mathclose{} \)). Furthermore, limlimit|modulusλcomplex number|modulusinfinity|modulusffunction(λcomplex number)|modulus=equals0zero \( \lim_{\mathopen{}\left\lvert{}λ\right\rvert\mathclose{}\to\infty}{}\mathopen{}\left\lvert{}f\mathopen{}\left( λ\right)\mathclose{}\right\rvert\mathclose{}= 0 \) by Proposition II.40 — so ffunction\( f \) is bounded on Ccomplex numbers\( \mathbb{C} \). Then, by Liouville's Theorem, ffunction\( f \) must be constant — and so ffunctionequivalent0zero \( f\equiv 0 \). This means for all λcomplex numberelement ofCcomplex numbers \( λ\in \mathbb{C} \) and for all φfunctionelement ofbounded linear operators(Xnormed linear space)* \( φ\in \mathcal{L}\mathopen{}\left( X\right)\mathclose{}^{*} \), we have φfunction((λcomplex number-minusTlinear map)1inverse)=equals0zero \( φ\mathopen{}\left( {\mathopen{}\left(λ-T\right)\mathclose{}}^{-1}\right)\mathclose{}= 0 \).

It follows from the Hahn-Banach Theorem that (λcomplex number-minusTlinear map)1inverse=equals0zero \( {\mathopen{}\left(λ-T\right)\mathclose{}}^{-1}= 0 \) for every λcomplex number\( λ \), which is impossible.


Previous: Invertible Operators back to top Next: Spectral Radius