Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

A. Tensor Notation

For xvector\( x \) and yvector\( y \) in HHilbert space\( H \), define xvectoryvector :mapsHHilbert spacetoHHilbert space \( x\otimes y : H \to H \) by (xvectoryvector)(ξfunction)=equalsξfunction, yvectortimesxvector \( \mathopen{}\left(x\otimes y\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}= \mathopen{}\left\langle{}ξ, y\right\rangle\mathclose{}x \). Then (xvectoryvector)(ξfunction)less than or equal toξfunctiontimesyvectortimesxvector \( \mathopen{}\left\lVert{}\mathopen{}\left(x\otimes y\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \) and so (xvectoryvector)(yvector)=equalsyvector2twotimesxvector \( \mathopen{}\left\lVert{}\mathopen{}\left(x\otimes y\right)\mathclose{}\mathopen{}\left( y\right)\mathclose{}\right\rVert\mathclose{}= {\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}^{2}\mathopen{}\left\lVert{}x\right\rVert\mathclose{} \). Thus xvectoryvectorelement ofbounded linear operators(HHilbert space) \( x\otimes y\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \), and xvectoryvector=equalsxvectortimesyvector \( \mathopen{}\left\lVert{}x\otimes y\right\rVert\mathclose{}= \mathopen{}\left\lVert{}x\right\rVert\mathclose{}\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \). Finally, (xvectoryvector)(ξfunction), ν=equalsyvector, ξfunctiontimesxvector, ν=equalsyvector, ξfunctiontimesxvector, yvector , \[ \mathopen{}\left\langle{}\mathopen{}\left(x\otimes y\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, ν\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left\langle{}y, ξ\right\rangle\mathclose{}x, ν\right\rangle\mathclose{}= \mathopen{}\left\langle{}y, ξ\right\rangle\mathclose{}\mathopen{}\left\langle{}x, y\right\rangle\mathclose{} \text{,} \] and ξfunction, (yvectorxvector)(ν)=equalsξfunction, ν, xvectortimesyvector=equalsxvector, yvectortimesyvector, ξfunction . \[ \mathopen{}\left\langle{}ξ, \mathopen{}\left(y\otimes x\right)\mathclose{}\mathopen{}\left( ν\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, \mathopen{}\left\langle{}ν, x\right\rangle\mathclose{}y\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, y\right\rangle\mathclose{}\mathopen{}\left\langle{}y, ξ\right\rangle\mathclose{} \text{.} \]Thus (xvectoryvector)*=equalsyvectorxvector \( \mathopen{}\left(x\otimes y\right)\mathclose{}^{*}= y\otimes x \).

For Tlinear mapelement ofbounded linear operators(HHilbert space) \( T\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \), we have Tlinear maptimes(xvectoryvector)=equalsTlinear map(xvector)yvector \( T\mathopen{}\left(x\otimes y\right)\mathclose{}= T\mathopen{}\left( x\right)\mathclose{}\otimes y \) and ((xvectoryvector)timesTlinear map)*=equalsTlinear map*(yvectorxvector)=equalsTlinear map*(yvector)xvector=equals(xvectorTlinear map*(yvector))* \( \mathopen{}\left(\mathopen{}\left(x\otimes y\right)\mathclose{}T\right)\mathclose{}^{*}= T^{*}\mathopen{}\left( y\otimes x\right)\mathclose{}= T^{*}\mathopen{}\left( y\right)\mathclose{}\otimes x= \mathopen{}\left(x\otimes T^{*}\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}^{*} \). So, (xvectoryvector)(Tlinear map)=equalsxvectorTlinear map*(yvector) \( \mathopen{}\left(x\otimes y\right)\mathclose{}\mathopen{}\left( T\right)\mathclose{}= x\otimes T^{*}\mathopen{}\left( y\right)\mathclose{} \). In particular, (xvector1oneyvector1one)(xvector2twoyvector2two)=equalsxvector2two, yvector1onetimes(xvector1oneyvector2two) \( \mathopen{}\left({x}_{1}\otimes {y}_{1}\right)\mathclose{}\mathopen{}\left( {x}_{2}\otimes {y}_{2}\right)\mathclose{}= \mathopen{}\left\langle{}{x}_{2}, {y}_{1}\right\rangle\mathclose{}\mathopen{}\left({x}_{1}\otimes {y}_{2}\right)\mathclose{} \). Notice for yvectornot equal to0zero \( y\neq 0 \), Ranrange(xvectoryvector)=equalsCxvector \( \operatorname{Ran}\mathopen{}\left( x\otimes y\right)\mathclose{}= \mathbb{C}x \).

Every Tlinear mapelement offinite rank operators(HHilbert space) \( T\in \mathcal{F}\mathopen{}\left( H\right)\mathclose{} \) can be written Tlinear map=equalssummationiinteger=1oneninteger xvectoriintegeryvectoriinteger \( T= \sum_{i=1}^{n}{} {x}_{i}\otimes {y}_{i} \). Indeed, let {seteunit vector1oneeunit vectorninteger}set \( \mathopen{}\left\{\, {e}_{1}, \dotsc, {e}_{n}\,\right\}\mathclose{} \) be an orthonormal basis for Tlinear map(HHilbert space) \( T\mathopen{}\left( H\right)\mathclose{} \). Then Tlinear map(ξfunction)=equalssummationiinteger=1oneninteger Tlinear map(ξfunction), eunit vectoriintegertimeseunit vectoriinteger =equalssummationiinteger=1oneninteger ξfunction, Tlinear map*(eunit vectoriinteger)timeseunit vectoriinteger =equalssummationiinteger=1oneninteger (eunit vectoriintegerTlinear map*(eunit vectoriinteger))(ξfunction) \[ T\mathopen{}\left( ξ\right)\mathclose{}= \sum_{i=1}^{n}{} \mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, {e}_{i}\right\rangle\mathclose{}{e}_{i} = \sum_{i=1}^{n}{} \mathopen{}\left\langle{}ξ, T^{*}\mathopen{}\left( {e}_{i}\right)\mathclose{}\right\rangle\mathclose{}{e}_{i} = \sum_{i=1}^{n}{} \mathopen{}\left({e}_{i}\otimes T^{*}\mathopen{}\left( {e}_{i}\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{} \] Easily, then finite rank operators(HHilbert space)=equalsHHilbert spacealgebraic tensor productHHilbert space¯conjugate Hilbert space \( \mathcal{F}\mathopen{}\left( H\right)\mathclose{}= H\odot \overline{H} \) where HHilbert space¯conjugate Hilbert space=equalsHHilbert space \( \overline{H}= H \) with conjugate scalar multiplication.

Until further notice, HHilbert space\( H \) is separable and infinite dimensional.

Notice that if {seteunit vector1oneeunit vectorninteger}set \( \mathopen{}\left\{\, {e}_{1}, \dotsc, {e}_{n}\,\right\}\mathclose{} \) is a finite orthonormal set, then P=equalssummationiinteger=1oneninteger eunit vectoriintegereunit vectoriinteger \( P= \sum_{i=1}^{n}{} {e}_{i}\otimes {e}_{i} \) is the projection of HHilbert space\( H \) on spanspan(eunit vector1oneeunit vectorninteger) \( \operatorname{span}\mathopen{}\left( {e}_{1}, \dotsc, {e}_{n}\right)\mathclose{} \). In particular, P(ξfunction)=equalssummationiinteger=1oneninteger ξfunction, eunit vectoriintegertimeseunit vectoriinteger \( P\mathopen{}\left( ξ\right)\mathclose{}= \sum_{i=1}^{n}{} \mathopen{}\left\langle{}ξ, {e}_{i}\right\rangle\mathclose{}{e}_{i} \). The spectral theorem for self-adjoint compact operators says if Aself-adjoint operator=equalsAself-adjoint operator*element of𝒦compact linear operators(HHilbert space) \( A= A^{*}\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \), then there exist real λcomplex numberninteger \( {λ}_{n} \) with λcomplex numbernintegerconverges to0zero \( {λ}_{n} \to 0 \) and an orthonormal basis {seteunit vector1oneeunit vector2two}set \( \mathopen{}\left\{\, {e}_{1}, {e}_{2}, \dotsc\,\right\}\mathclose{} \) for HHilbert space\( H \) such that Aself-adjoint operator=equalssummationninteger=1oneinfinity λcomplex numbertimeseunit vectornintegereunit vectorninteger \( A= \sum_{n=1}^{\infty}{} λ{e}_{n}\otimes {e}_{n} \) (norm-convergent series). In this case Aself-adjoint operator(eunit vectorjinteger)=equalsλcomplex numberjintegertimeseunit vectorjinteger \( A\mathopen{}\left( {e}_{j}\right)\mathclose{}= {λ}_{j}{e}_{j} \).

Example III.18

Let HHilbert space\( H \) be the space L2Lebesgue space([interval0zero, 1one]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \). Let ξfunction0zero(xvector)=equals1one \( {ξ}_{0}\mathopen{}\left( x\right)\mathclose{}= 1 \) and ξfunction1one(xvector)=equalsxvector \( {ξ}_{1}\mathopen{}\left( x\right)\mathclose{}= x \). Let Tlinear map\( T \) be the Volterra operator, defined by (Tlinear map(ffunction))(treal number)=equalsintegral0zerotreal numberffunction(xvector)dxvector \( \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{}= \int _{0}^{t}{}f\mathopen{}\left( x\right)\mathclose{}\,\mathrm{d}x \). Recall (Tlinear map*(ffunction))(treal number)=equalsintegraltreal number1oneffunction(xvector)dxvector \( \mathopen{}\left( T^{*}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{}= \int _{t}^{1}{}f\mathopen{}\left( x\right)\mathclose{}\,\mathrm{d}x \). So ((Tlinear map+plusTlinear map*)(ffunction))(treal number)=equalsintegral0zero1oneffunction(xvector)dxvector=equalsffunction, ξfunction0zero \( \mathopen{}\left(\mathopen{}\left(T+ T^{*}\right)\mathclose{}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{}= \int _{0}^{1}{}f\mathopen{}\left( x\right)\mathclose{}\,\mathrm{d}x= \mathopen{}\left\langle{}f, {ξ}_{0}\right\rangle\mathclose{} \). Then (Tlinear map+plusTlinear map*)(ffunction)=equalsffunction, ξfunction0zerotimesξfunction0zero \( \mathopen{}\left(T+ T^{*}\right)\mathclose{}\mathopen{}\left( f\right)\mathclose{}= \mathopen{}\left\langle{}f, {ξ}_{0}\right\rangle\mathclose{}{ξ}_{0} \) and Tlinear map+plusTlinear map*=equalsξfunction0zeroξfunction0zero \( T+ T^{*}= {ξ}_{0}\otimes {ξ}_{0} \). Define Aself-adjoint operator=equalsTlinear map2two+plusξfunction1one(ξfunction0zero-minusξfunction1one) \( A= {-}{T}^{2}+{ξ}_{1}\otimes \mathopen{}\left({ξ}_{0}-{ξ}_{1}\right)\mathclose{} \), so Aself-adjoint operatorelement of𝒦compact linear operators(HHilbert space) \( A\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \). We claim that Aself-adjoint operator=equalsAself-adjoint operator* \( A= A^{*} \). (Tlinear map*)2two=equals (ξfunction0zeroξfunction0zero-minusTlinear map) 2two =equals (ξfunction0zeroξfunction0zero) 2two -minus(ξfunction0zeroξfunction0zero)timesTlinear map-minusTlinear maptimes(ξfunction0zeroξfunction0zero)+plusTlinear map2two=equalsξfunction0zeroξfunction0zero-minusξfunction0zeroTlinear map*(ξfunction0zero)-minusTlinear map(ξfunction0zero)ξfunction0zero+plusTlinear map2two=equalsξfunction0zeroξfunction0zero-minusξfunction0zero(ξfunction0zero-minusξfunction1one)-minusξfunction1oneξfunction0zero+plusTlinear map2two=equalsTlinear map2two+plusξfunction0zeroξfunction1one-minusξfunction1oneξfunction0zero . \[ {\mathopen{}\left( T^{*}\right)\mathclose{}}^{2}= {\mathopen{}\left({ξ}_{0}\otimes {ξ}_{0}-T\right)\mathclose{}}^{2}= {\mathopen{}\left({ξ}_{0}\otimes {ξ}_{0}\right)\mathclose{}}^{2}-\mathopen{}\left({ξ}_{0}\otimes {ξ}_{0}\right)\mathclose{}T-T\mathopen{}\left({ξ}_{0}\otimes {ξ}_{0}\right)\mathclose{}+{T}^{2}= {ξ}_{0}\otimes {ξ}_{0}-{ξ}_{0}\otimes T^{*}\mathopen{}\left( {ξ}_{0}\right)\mathclose{}-T\mathopen{}\left( {ξ}_{0}\right)\mathclose{}\otimes {ξ}_{0}+{T}^{2}= {ξ}_{0}\otimes {ξ}_{0}-{ξ}_{0}\otimes \mathopen{}\left({ξ}_{0}-{ξ}_{1}\right)\mathclose{}-{ξ}_{1}\otimes {ξ}_{0}+{T}^{2}= {T}^{2}+{ξ}_{0}\otimes {ξ}_{1}-{ξ}_{1}\otimes {ξ}_{0} \text{.} \] Thus Aself-adjoint operator*=equals(Tlinear map*)2two-minus(ξfunction0zero-minusξfunction1one)ξfunction1one=equalsξfunction1oneξfunction1one-minusξfunction1oneξfunction0zero+plusTlinear map2two=equalsξfunction1one(ξfunction1one-minusξfunction0zero)+plusTlinear map2two=equalsAself-adjoint operator \( {-} A^{*}= {\mathopen{}\left( T^{*}\right)\mathclose{}}^{2}-\mathopen{}\left({ξ}_{0}-{ξ}_{1}\right)\mathclose{}\otimes {ξ}_{1}= {ξ}_{1}\otimes {ξ}_{1}-{ξ}_{1}\otimes {ξ}_{0}+{T}^{2}= {ξ}_{1}\otimes \mathopen{}\left({ξ}_{1}-{ξ}_{0}\right)\mathclose{}+{T}^{2}= {-}A \). Consider eigenvalues λcomplex numberelement ofRreal numbers \( λ\in \mathbb{R} \), Aself-adjoint operator(ffunction)=equalsλcomplex number(ffunction) \( A\mathopen{}\left( f\right)\mathclose{}= λ\mathopen{}\left( f\right)\mathclose{} \), ffunctionnot equal to0zero \( f\neq 0 \). There are three cases.

  1. ( λcomplex number>greater than0zero \( λ\gt 0 \)) Since Tlinear map(HHilbert space)subsetCspace of continuous functions([interval0zero, 1one]interval) \( T\mathopen{}\left( H\right)\mathclose{}\subseteq \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), the fundamental theorem of calculus makes Tlinear map2two(ffunction)element ofC1space of continuously differentiable functions([interval0zero, 1one]interval) \( {T}^{2}\mathopen{}\left( f\right)\mathclose{}\in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) with (Tlinear map2two(ffunction))derivative=equalsTlinear map(ffunction) \( \mathopen{}\left({T}^{2}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}' = T\mathopen{}\left( f\right)\mathclose{} \). Writing λcomplex number=equals1oneμmeasure2two \( λ= \frac{1}{{μ}^{2}} \), we have ffunction=equalsμmeasure2twotimesAself-adjoint operator(ffunction) \( f= {μ}^{2}A\mathopen{}\left( f\right)\mathclose{} \), and thus ffunctionelement ofC1space of continuously differentiable functions([interval0zero, 1one]interval) \( f\in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \). It follows that Tlinear map(ffunction)element ofC1space of continuously differentiable functions([interval0zero, 1one]interval) \( T\mathopen{}\left( f\right)\mathclose{}\in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), with (Tlinear map(ffunction))derivative=equalsffunction \( \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}' = f \). Further ffunctionderivative=equalsμmeasure2twotimes(Aself-adjoint operator(ffunction))derivative=equalsμmeasure2twotimes(Tlinear map(ffunction)+plusffunction, ξfunction0zero-minusξfunction1one) , \[ f' = {μ}^{2}\mathopen{}\left(A\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}' = {μ}^{2}\mathopen{}\left({-}T\mathopen{}\left( f\right)\mathclose{}+\mathopen{}\left\langle{}f, {ξ}_{0}-{ξ}_{1}\right\rangle\mathclose{}\right)\mathclose{} \text{,} \] so ffunctionderivativeelement ofC1space of continuously differentiable functions([interval0zero, 1one]interval) \( f' \in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) and ffunctionsecond derivative=equalsμmeasure2twotimes(ffunction+plus0zero)=equalsμmeasure2twotimesffunction . \[ f'' = {μ}^{2}\mathopen{}\left({-}f+0\right)\mathclose{}= {-}{μ}^{2}f \text{.} \] We claim that ffunction(0zero)=equals0zero=equalsffunction(1one) \( f\mathopen{}\left( 0\right)\mathclose{}= 0= f\mathopen{}\left( 1\right)\mathclose{} \), which amounts to showing (Aself-adjoint operator(ffunction))(0zero)=equals0zero=equals(Aself-adjoint operator(ffunction))(1one) \( \mathopen{}\left(A\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( 0\right)\mathclose{}= 0= \mathopen{}\left(A\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( 1\right)\mathclose{} \). Indeed, from (Aself-adjoint operator(ffunction))(treal number)=equals (Tlinear map2two(ffunction))(treal number) +plusffunction, ξfunction0zero-minusξfunction1onetimestreal number \( \mathopen{}\left(A\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{}= {-} \mathopen{}\left({T}^{2}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{} +\mathopen{}\left\langle{}f, {ξ}_{0}-{ξ}_{1}\right\rangle\mathclose{}t \), we immediately get (Aself-adjoint operator(ffunction))(0zero)=equals0zero \( \mathopen{}\left(A\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( 0\right)\mathclose{}= 0 \), and at the other end Aself-adjoint operator(ffunction(1one))=equals (Tlinear map2two(ffunction))(1one) +plusffunction, ξfunction0zero-minusξfunction1one=equals integral0zero1one (Tlinear map(ffunction))(xvector) dxvector +plusffunction, ξfunction0zero-minusξfunction1one=equals Tlinear map(ffunction), ξfunction0zero +plusffunction, ξfunction0zero-minusξfunction1one=equals ffunction, Tlinear map*(ξfunction0zero) +plusffunction, ξfunction0zero-minusξfunction1one=equals0zero . \[ A\mathopen{}\left( f\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{}= {-} \mathopen{}\left({T}^{2}\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( 1\right)\mathclose{} +\mathopen{}\left\langle{}f, {ξ}_{0}-{ξ}_{1}\right\rangle\mathclose{}= {-} \int _{0}^{1}{} \mathopen{}\left(T\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{} \,\mathrm{d}x +\mathopen{}\left\langle{}f, {ξ}_{0}-{ξ}_{1}\right\rangle\mathclose{}= {-} \mathopen{}\left\langle{}T\mathopen{}\left( f\right)\mathclose{}, {ξ}_{0}\right\rangle\mathclose{} +\mathopen{}\left\langle{}f, {ξ}_{0}-{ξ}_{1}\right\rangle\mathclose{}= {-} \mathopen{}\left\langle{}f, T^{*}\mathopen{}\left( {ξ}_{0}\right)\mathclose{}\right\rangle\mathclose{} +\mathopen{}\left\langle{}f, {ξ}_{0}-{ξ}_{1}\right\rangle\mathclose{}= 0 \text{.} \] The general solution to ffunctionsecond derivative+plusμmeasure2twotimesffunction=equals0zero \( f'' +{μ}^{2}f= 0 \) is ffunction(xvector)=equalsareal numbertimescoscosine(μmeasuretimesxvector)+plusbreal numbertimessinsine(μmeasuretimesxvector) \( f\mathopen{}\left( x\right)\mathclose{}= a\cos\mathopen{}\left( μx\right)\mathclose{}+b\sin\mathopen{}\left( μx\right)\mathclose{} \). The endpoint condition ffunction(0zero)=equals0zero \( f\mathopen{}\left( 0\right)\mathclose{}= 0 \) makes areal number=equals0zero \( a= 0 \) (and thus breal numbernot equal to0zero \( b\neq 0 \)). From ffunction(1one)=equals0zero \( f\mathopen{}\left( 1\right)\mathclose{}= 0 \), we deduce that μmeasure\( μ \) is a nonzero integer multiple of π\( π \). We conclude that the positive eigenvalues of Aself-adjoint operator\( A \) are λcomplex numberninteger=equals 1one ninteger2twotimesπ2two \( {λ}_{n}= \frac{1}{{n}^{2}{π}^{2}} \) with normalized eigenfunctions eunit vectorninteger=equalseunit vectorninteger(xvector)=equals2twotimessinsine(nintegertimesπtimesxvector) \( {e}_{n}= {e}_{n}\mathopen{}\left( x\right)\mathclose{}= \sqrt{2}\sin\mathopen{}\left( nπx\right)\mathclose{} \), for ninteger\( n \) in {set1one2two}set \( \mathopen{}\left\{\, 1, 2, \dotsc\,\right\}\mathclose{} \).
  2. ( λcomplex number=equals0zero \( λ= 0 \)) Kerkernel(Aself-adjoint operator)=equals0zero \( \operatorname{Ker}\mathopen{}\left( A\right)\mathclose{}= 0 \) because Aself-adjoint operator(ffunction)=equals0zero \( A\mathopen{}\left( f\right)\mathclose{}= 0 \) implies Tlinear map2two(ffunction)=equalscreal numbertimesξfunction1one \( {T}^{2}\mathopen{}\left( f\right)\mathclose{}= c{ξ}_{1} \), which gives Tlinear map(ffunction)=equalscreal numbertimesξfunction0zero \( T\mathopen{}\left( f\right)\mathclose{}= c{ξ}_{0} \). But then Tlinear map(ffunction(0zero))=equals0zero \( T\mathopen{}\left( f\mathopen{}\left( 0\right)\mathclose{}\right)\mathclose{}= 0 \), so creal number=equals0zero \( c= 0 \).
  3. ( λcomplex number<less than0zero \( λ\lt 0 \)) Write λcomplex number=equals 1oneμmeasure2two \( λ= {-} \frac{1}{{μ}^{2}} \). Aself-adjoint operator(ffunction)=equals 1oneμmeasure2two timesffunction \( A\mathopen{}\left( f\right)\mathclose{}= {-} \frac{1}{{μ}^{2}} f \) gives ffunction(xvector)=equalsαcomplex numbertimeseEuler's constantμmeasuretimesxvector+plusβcomplex numbertimeseEuler's constantμmeasuretimesxvector \( f\mathopen{}\left( x\right)\mathclose{}= α{\mathrm{e}}^{μx}+β{\mathrm{e}}^{{-}μx} \) (as before) and ffunction(0zero)=equals0zero=equalsffunction(1one) \( f\mathopen{}\left( 0\right)\mathclose{}= 0= f\mathopen{}\left( 1\right)\mathclose{} \) forces αcomplex number=equals0zero=equalsβcomplex number \( α= 0= β \).
We have diagonalized the operator Aself-adjoint operator\( A \). That is, the eunit vectorninteger \( {e}_{n} \)'s form an orthonormal basis for L2Lebesgue space([interval0zero, 1one]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \) (a fact we have already demonstrated less gracefully in an earlier example), and Aself-adjoint operator=equals1oneπ2twotimessummationninteger=1oneinfinity 1oneninteger2twotimeseunit vectornintegereunit vectorninteger . \[ A= \frac{1}{{π}^{2}}\sum_{n=1}^{\infty}{} \frac{1}{{n}^{2}}{e}_{n}\otimes {e}_{n} \text{.} \] Notice that this makes Aself-adjoint operator=equalsρEuclidean norm(Aself-adjoint operator)=equals1oneπ2two \( \mathopen{}\left\lVert{}A\right\rVert\mathclose{}= ρ\mathopen{}\left( A\right)\mathclose{}= \frac{1}{{π}^{2}} \), which is not obvious from the definition of Aself-adjoint operator\( A \).


Previous: Compact Operators back to top Next: Trace Class Operators