Lecture Notes in Functional Analysis
by William L. Paschke
edition 0.9
image/svg+xml
A. Unbounded Operators
A linear operator L linear operator \( L \) in H Hilbert space \( H \) (as distinct from on H Hilbert space \( H \) ) has domain
D domain of operator ⊆ subset H Hilbert space
\(
D\subseteq H
\)
and range in H Hilbert space \( H \) . Write
( tuple L linear operator , D domain of operator ) tuple
\(
\mathopen{}\left(L, D\right)\mathclose{}
\)
for
L linear operator : maps D domain of operator → to H Hilbert space
\(
L : D \to H
\) .
Say that
( tuple L linear operator 1 one , D domain of operator 1 one ) tuple
\(
\mathopen{}\left({L}_{1}, {D}_{1}\right)\mathclose{}
\)
is
an extension of
( tuple L linear operator , D domain of operator ) tuple
\(
\mathopen{}\left(L, D\right)\mathclose{}
\)
if
D domain of operator ⊆ subset D domain of operator 1 one
\(
D\subseteq {D}_{1}
\)
and
L linear operator 1 one | restricted to D domain of operator = equals L linear operator
\(
{L}_{1}|D= L
\) .
The graph of L linear operator \( L \) is
G ( L linear operator ) = equals G ( ( tuple L linear operator , D domain of operator ) tuple ) = equals { set ( tuple x vector , L linear operator ( x vector ) ) tuple | such that x vector ∈ element of D domain of operator } set ⊆ subset H Hilbert space ⊕ H Hilbert space
\(
\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{G}}\mathopen{}\left( \mathopen{}\left(L, D\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\,\middle\vert\, x\in D\,\right\}\mathclose{}\subseteq H\oplus H
\) .
If D domain of operator \( D \) is
closed, then L linear operator \( L \) is bounded if and only if its graph is closed in
H Hilbert space ⊕ H Hilbert space
\(
H\oplus H
\)
(Closed Graph Theorem ).
It is easy to give examples of unbounded L linear operator \( L \) on non-closed D domain of operator \( D \) with closed graph.
Example IV.13
Take
S operator ∈ element of ℒ bounded linear operators ( H Hilbert space )
\(
S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{}
\)
with
Ker kernel ( S operator ) = equals { set 0 zero } set
\(
\operatorname{Ker}\mathopen{}\left( S\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{}
\)
but S operator \( S \) not invertible. Let
D domain of operator = equals S operator ( H Hilbert space )
\(
D= S\mathopen{}\left( H\right)\mathclose{}
\) .
Define
L linear operator : maps D domain of operator → to H Hilbert space
\(
L : D \to H
\)
by
L linear operator ( S operator ( y vector ) ) = equals y vector
\(
L\mathopen{}\left( S\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}= y
\)
(which is possible because S operator \( S \) is injective). Then
G ( ( tuple L linear operator , D domain of operator ) tuple ) = equals { set ( tuple x vector , L linear operator ( x vector ) ) tuple | such that x vector ∈ element of D domain of operator } set = equals { set ( tuple S operator ( y vector ) , L linear operator ( S operator ( y vector ) ) ) tuple | such that y vector ∈ element of H Hilbert space } set = equals { set ( tuple S operator ( y vector ) , y vector ) tuple | such that y vector ∈ element of H Hilbert space } set
\(
\mathop{\mathcal{G}}\mathopen{}\left( \mathopen{}\left(L, D\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\,\middle\vert\, x\in D\,\right\}\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(S\mathopen{}\left( y\right)\mathclose{}, L\mathopen{}\left( S\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}\,\middle\vert\, y\in H\,\right\}\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(S\mathopen{}\left( y\right)\mathclose{}, y\right)\mathclose{}\,\middle\vert\, y\in H\,\right\}\mathclose{}
\) ,
which is closed because it is the image of the
graph of S operator \( S \) (which is closed) under switching the entries.
Definition IV.14
A linear operator
L linear operator : maps D domain of operator → to H Hilbert space
\(
L : D \to H
\)
is closed if its graph is closed in
H Hilbert space ⊕ H Hilbert space
\(
H\oplus H
\) .
Example IV.15
Let
H Hilbert space = equals l 2 ( Z integers + positive elements )
\(
H= \mathrm{l}^{0}\mathopen{}\left( {\mathbb{Z}}^{+}\right)\mathclose{}
\)
(as functions on
Z integers + positive elements
\(
{\mathbb{Z}}^{+}
\) ).
Let
α function : maps Z integers + positive elements → to C complex numbers
\(
α : {\mathbb{Z}}^{+} \to \mathbb{C}
\)
be any function. Let
D domain of operator = equals { set f function ∈ element of l 2 | such that
α function ( f function ) ∈ element of l 2
} set
\(
D= \mathopen{}\left\{\, f\in \mathrm{l}^{0}\,\middle\vert\,
, α\mathopen{}\left( f\right)\mathclose{}\in \mathrm{l}^{0},
\,\right\}\mathclose{}
\) ,
L linear operator ( f function ) = equals α function ( f function )
\(
L\mathopen{}\left( f\right)\mathclose{}= α\mathopen{}\left( f\right)\mathclose{}
\) .
To see L linear operator \( L \) is closed, suppose
( tuple f function n integer , L linear operator ( f function n integer ) ) tuple → converges to ( tuple f function , g function ) tuple
\(
\mathopen{}\left({f}_{n}, L\mathopen{}\left( {f}_{n}\right)\mathclose{}\right)\mathclose{} \to \mathopen{}\left(f, g\right)\mathclose{}
\) ,
f function n integer ∈ element of D domain of operator
\(
{f}_{n}\in D
\) .
Then
f function n integer → converges to f function
\(
{f}_{n} \to f
\) ,
α function ( f function n integer ) → converges to g function
\(
α\mathopen{}\left( {f}_{n}\right)\mathclose{} \to g
\)
in l 2 \( \mathrm{l}^{0} \) . In particular,
f function n integer ( j integer ) → converges to f function ( j integer )
\(
{f}_{n}\mathopen{}\left( j\right)\mathclose{} \to f\mathopen{}\left( j\right)\mathclose{}
\)
for all
j integer ∈ element of Z integers + positive elements
\(
j\in {\mathbb{Z}}^{+}
\) ,
and, using Fatou,
∑ summation j integer
| modulus g function ( j integer ) - minus α function ( j integer ) times f function ( j integer ) | modulus
2 two
= equals ∑ summation j integer
lim limit n integer
| modulus g function ( j integer ) - minus α function ( j integer ) times f function n integer ( j integer ) | modulus
2 two
≤ less than or equal to lim inf limit infimum n integer
| modulus g function ( j integer ) - minus α function ( j integer ) times f function n integer ( j integer ) | modulus
2 two
= equals lim inf limit infimum n integer
‖ g function - minus α function ( f function n integer ) ‖
2 two
= equals 0 zero
.
\[
\sum_{j}{}
{\mathopen{}\left\lvert{}g\mathopen{}\left( j\right)\mathclose{}-α\mathopen{}\left( j\right)\mathclose{}f\mathopen{}\left( j\right)\mathclose{}\right\rvert\mathclose{}}^{2}
= \sum_{j}{}
\lim_{n}{}
{\mathopen{}\left\lvert{}g\mathopen{}\left( j\right)\mathclose{}-α\mathopen{}\left( j\right)\mathclose{}{f}_{n}\mathopen{}\left( j\right)\mathclose{}\right\rvert\mathclose{}}^{2}
\leq \liminf_{n}{}
{\mathopen{}\left\lvert{}g\mathopen{}\left( j\right)\mathclose{}-α\mathopen{}\left( j\right)\mathclose{}{f}_{n}\mathopen{}\left( j\right)\mathclose{}\right\rvert\mathclose{}}^{2}
= \liminf_{n}{}
{\mathopen{}\left\lVert{}g-α\mathopen{}\left( {f}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2}
= 0
\text{.}
\]
So,
α function ( f function ) = equals g function ∈ element of l 2
\(
α\mathopen{}\left( f\right)\mathclose{}= g\in \mathrm{l}^{0}
\) ,
f function ∈ element of D domain of operator
\(
f\in D
\) ,
and
( tuple f function , g function ) tuple = equals ( tuple f function , L linear operator ( f function ) ) tuple ∈ element of G group ( L linear operator )
\(
\mathopen{}\left(f, g\right)\mathclose{}= \mathopen{}\left(f, L\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\in G\mathopen{}\left( L\right)\mathclose{}
\) .
Definition IV.16
A linear operator
L linear operator : maps D domain of operator → to H Hilbert space
\(
L : D \to H
\)
is closable (or pre-closed)
if the closure of the graph (in
H Hilbert space ⊕ H Hilbert space
\(
H\oplus H
\) )
is the graph of a linear operator.
That is,
For all
x vector ∈ element of H Hilbert space
\(
x\in H
\) ,
# cardinality
( ( { set x vector } set ⊕ H Hilbert space ) ∩ intersection G ( L linear operator ) ¯ )
≤ less than or equal to 1 one
\(
{\#}
\mathopen{}\left(\mathopen{}\left(\mathopen{}\left\{\, x\,\right\}\mathclose{}\oplus H\right)\mathclose{}\cap \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}}\right)\mathclose{}
\leq 1
\) .
If
( tuple x vector , y vector 1 one ) tuple
\(
\mathopen{}\left(x, {y}_{1}\right)\mathclose{}
\)
and
( tuple x vector , y vector 2 two ) tuple
\(
\mathopen{}\left(x, {y}_{2}\right)\mathclose{}
\)
are in
G ( L linear operator ) ¯
\(
\overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}}
\)
then
y vector 1 one = equals y vector 2 two
\(
{y}_{1}= {y}_{2}
\) .
( tuple 0 zero , y vector ) tuple ∈ element of G ( L linear operator ) ¯
\(
\mathopen{}\left(0, y\right)\mathclose{}\in \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}}
\)
implies
y vector = equals 0 zero
\(
y= 0
\) .
x vector n integer → converges to 0 zero
\(
{x}_{n} \to 0
\)
in D domain of operator \( D \) and
L linear operator ( x vector n integer ) → converges to y vector
\(
L\mathopen{}\left( {x}_{n}\right)\mathclose{} \to y
\)
implies
y vector = equals 0 zero
\(
y= 0
\) .
Notation IV.17
For
( tuple L linear operator , D domain of operator ) tuple
\(
\mathopen{}\left(L, D\right)\mathclose{}
\)
closable, write
L linear operator ¯ norm closure
\(
\overline{L}
\)
for the linear operator with
G ( L linear operator ¯ ) = equals G ( L linear operator ) ¯
\(
\mathop{\mathcal{G}}\mathopen{}\left( \overline{L}\right)\mathclose{}= \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}}
\) .
L linear operator ¯
\(
\overline{L}
\)
is called the closure of L linear operator \( L \) .
Example IV.18
H Hilbert space = equals L 2 Lebesgue space ( R real numbers )
\(
H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{}
\) .
D domain of operator = equals { set f function ∈ element of L 2 Lebesgue space ( R real numbers ) ∩ intersection C 1 space of continuously differentiable functions ( R real numbers ) | such that
f function ′ ∈ element of L 2 Lebesgue space ( R real numbers )
} set
\(
D= \mathopen{}\left\{\, f\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{}\cap \mathrm{C}^{1}\mathopen{}\left( \mathbb{R}\right)\mathclose{}\,\middle\vert\,
, f'\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{},
\,\right\}\mathclose{}
\) .
Suppose
( sequence f function n integer ) sequence
\(
\mathopen{}\left({f}_{n}\right)\mathclose{}
\)
is a sequence in D domain of operator \( D \) with
f function n integer → converges to 0 zero
\(
{f}_{n} \to 0
\)
and
f function n integer ′ → converges to g function
\(
{f}_{n}' \to g
\)
(in L 2 Lebesgue space \( \mathrm{L}^{\mathrm{2}} \) ) for some
g function ∈ element of L 2 Lebesgue space
\(
g\in \mathrm{L}^{\mathrm{2}}
\) .
Fix
a real number < less than b real number
\(
a\lt b
\) .
Define G function \( G \) on
[ interval a real number , b real number ] interval
\(
\mathopen{}\left[a, b\right]\mathclose{}
\)
by
G function ( x vector ) = equals ∫ integral a real number x vector g function
\(
G\mathopen{}\left( x\right)\mathclose{}= \int _{a}^{x}{}g
\) .
Then
f function n integer ′ | restricted to [ interval a real number , b real number ] interval → converges to g function | restricted to [ interval a real number , b real number ] interval
\(
{f}_{n}'|\mathopen{}\left[a, b\right]\mathclose{} \to g|\mathopen{}\left[a, b\right]\mathclose{}
\) ,
because
f function n integer | restricted to [ interval a real number , b real number ] interval - minus f function n integer ( a real number ) times 1 identity function → converges to G function
\(
{f}_{n}|\mathopen{}\left[a, b\right]\mathclose{}-{f}_{n}\mathopen{}\left( a\right)\mathclose{}\mathbf{1} \to G
\)
in
L 2 Lebesgue space ( [ interval a real number , b real number ] interval )
\(
\mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[a, b\right]\mathclose{}\right)\mathclose{}
\) .
But,
f function n integer | restricted to [ interval a real number , b real number ] interval → converges to 0 zero
\(
{f}_{n}|\mathopen{}\left[a, b\right]\mathclose{} \to 0
\) ,
so G function \( G \) is the
L 2 Lebesgue space
\(
\mathrm{L}^{\mathrm{2}}
\)
limit of constant functions, and must therefore be constant. But,
G function ( a real number ) = equals 0 zero
\(
G\mathopen{}\left( a\right)\mathclose{}= 0
\) ,
so
G function ≡ equivalent 0 zero
\(
G\equiv 0
\)
almost everywhere on
[ interval a real number , b real number ] interval
\(
\mathopen{}\left[a, b\right]\mathclose{}
\) ,
and hence on R real numbers \( \mathbb{R} \) .
Thus L linear operator \( L \) is pre-closed. To see that it is not closed, consider the functions
(see figures Figure IV.A and Figure IV.B )
φ function ( x vector ) = equals { cases 0 zero ,
| modulus x vector | modulus ≤ less than or equal to 1 one
; 1 one - minus | modulus x vector | modulus ,
| modulus x vector | modulus < less than 1 one .
}
\[
φ\mathopen{}\left( x\right)\mathclose{}= \begin{cases}0, &
\mathopen{}\left\lvert{}x\right\rvert\mathclose{}\leq 1
; \\ 1-\mathopen{}\left\lvert{}x\right\rvert\mathclose{}, &
\mathopen{}\left\lvert{}x\right\rvert\mathclose{}\lt 1\text{.}
\end{cases}
\]
ψ unit vector ( x vector ) = equals { cases 0 zero ,
| modulus x vector | modulus ≥ greater than or equal to 1 one
; −
sgn sign ( x vector )
,
| modulus x vector | modulus < less than 1 one
}
\[
ψ\mathopen{}\left( x\right)\mathclose{}= \begin{cases}0, &
\mathopen{}\left\lvert{}x\right\rvert\mathclose{}\geq 1
; \\ {-}
\mathop{\text{sgn}}\mathopen{}\left( x\right)\mathclose{}
, &
\mathopen{}\left\lvert{}x\right\rvert\mathclose{}\lt 1
\end{cases}
\] Then
( tuple φ function , ψ unit vector ) tuple ∈ element of G function ( L linear operator ) ¯ ∖ set difference G function ( L linear operator )
\(
\mathopen{}\left(φ, ψ\right)\mathclose{}\in \overline{G\mathopen{}\left( L\right)\mathclose{}}\setminus G\mathopen{}\left( L\right)\mathclose{}
\) .
x vector \( x \)
y vector \( y \)
− 1 one \( {-}1 \)
1 one \( 1 \)
1 one \( 1 \)
Figure IV.A.
φ function ( x vector )
\(
φ\mathopen{}\left( x\right)\mathclose{}
\)
x vector \( x \)
y vector \( y \)
− 1 one \( {-}1 \)
1 one \( 1 \)
1 one \( 1 \)
Figure IV.B.
ψ unit vector ( x vector )
\(
ψ\mathopen{}\left( x\right)\mathclose{}
\)
Definition IV.19
For any densely defined operator
L linear operator : maps D domain of operator → to H Hilbert space
\(
L : D \to H
\)
(i.e.
D domain of operator ¯ = equals H Hilbert space
\(
\overline{D}= H
\) ),
define
D domain of operator *
\(
D^{*}
\)
to be the set of y vector ∈ element of H Hilbert space \( y\in H \) such that
there exists ŷ vector \( ŷ \) such that
〈 L linear operator ( x vector ) , y vector 〉 = equals 〈 x vector , ŷ vector 〉
\(
\mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, ŷ\right\rangle\mathclose{}
\) for all
x vector ∈ element of D domain of operator \( x\in D \) .
Because D domain of operator \( D \) is dense,
ŷ vector
\(
ŷ
\)
is unique, and we get an operator
L linear operator * : maps D domain of operator * → to H Hilbert space
\(
L^{*} : D^{*} \to H
\)
defined by
L linear operator * ( y vector ) = equals ŷ vector
\(
L^{*}\mathopen{}\left( y\right)\mathclose{}= ŷ
\) ,
the adjoint of L linear operator \( L \) , with
〈 L linear operator ( x vector ) , y vector 〉 = equals 〈 x vector , L linear operator * ( y vector ) 〉
\(
\mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, L^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}
\)
for all
x vector ∈ element of D domain of operator
\(
x\in D
\)
and
y vector ∈ element of D domain of operator *
\(
y\in D^{*}
\) .
Proposition IV.20
For any densely defined L linear operator \( L \) , the operator
L linear operator *
\(
L^{*}
\)
is closed.
Suppose
( tuple y vector n integer , L linear operator * ( y vector n integer ) ) tuple → converges to ( tuple y vector , w vector ) tuple
\(
\mathopen{}\left({y}_{n}, L^{*}\mathopen{}\left( {y}_{n}\right)\mathclose{}\right)\mathclose{} \to \mathopen{}\left(y, w\right)\mathclose{}
\)
in
H Hilbert space ⊕ H Hilbert space
\(
H\oplus H
\)
for a sequence
( sequence y vector n integer ) sequence ∈ element of D domain of operator *
\(
\mathopen{}\left({y}_{n}\right)\mathclose{}\in D^{*}
\) .
Then for all
x vector ∈ element of D domain of operator
\(
x\in D
\) ,
〈 L linear operator ( x vector ) , y vector n integer 〉 → converges to 〈 L linear operator ( x vector ) , y vector 〉
\(
\mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, {y}_{n}\right\rangle\mathclose{} \to \mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}
\)
and
〈 L linear operator ( x vector ) , y vector n integer 〉 = equals 〈 x vector , L linear operator * ( y vector n integer ) 〉 → converges to 〈 x vector , w vector 〉
\(
\mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, {y}_{n}\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, L^{*}\mathopen{}\left( {y}_{n}\right)\mathclose{}\right\rangle\mathclose{} \to \mathopen{}\left\langle{}x, w\right\rangle\mathclose{}
\) .
Thus
〈 L linear operator ( x vector ) , y vector 〉 = equals 〈 x vector , w vector 〉
\(
\mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, w\right\rangle\mathclose{}
\) ,
making
y vector ∈ element of D domain of operator *
\(
y\in D^{*}
\) ,
w vector = equals L linear operator * ( y vector )
\(
w= L^{*}\mathopen{}\left( y\right)\mathclose{}
\) ,
and
( tuple y vector , w vector ) tuple ∈ element of G ( L linear operator * )
\(
\mathopen{}\left(y, w\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( L^{*}\right)\mathclose{}
\) .
Example IV.21
H Hilbert space = equals L 2 Lebesgue space ( [ interval 0 zero , 1 one ] interval )
\(
H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\) .
Define
D domain of operator = equals C 1 space of continuously differentiable functions ( [ interval 0 zero , 1 one ] interval )
\(
D= \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\) . Consider
L linear operator : maps D domain of operator → to H Hilbert space
\(
L : D \to H
\)
defined by
L linear operator ( f continuous function ) = equals f continuous function ′
\(
L\mathopen{}\left( f\right)\mathclose{}= f'
\) .
Then
D domain of operator * ∩ intersection C 1 space of continuously differentiable functions ( [ interval 0 zero , 1 one ] interval ) = equals { set g continuous function ∈ element of C 1 space of continuously differentiable functions ( [ interval 0 zero , 1 one ] interval ) | such that
g continuous function ( 0 zero ) = equals 0 zero = equals g continuous function ( 1 one )
} set
\(
D^{*}\cap \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}= \mathopen{}\left\{\, g\in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}\,\middle\vert\,
, g\mathopen{}\left( 0\right)\mathclose{}= 0= g\mathopen{}\left( 1\right)\mathclose{},
\,\right\}\mathclose{}
\) .
For f continuous function \( f \) and g continuous function \( g \) in
C 1 space of continuously differentiable functions ( [ interval 0 zero , 1 one ] interval )
\(
\mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\) ,
∫ integral 0 zero 1 one
f continuous function ′ times g continuous function ¯ complex conjugate
= equals ( evaluation
f continuous function times g continuous function ¯ complex conjugate
| evaluation 0 zero 1 one - minus ∫ integral 0 zero 1 one
f continuous function times g continuous function ¯ complex conjugate ′
\(
\int _{0}^{1}{}
f'\overline{g}
= \mathopen{}\left(
f\overline{g}
\right|\mathclose{}_{0}^{1}-\int _{0}^{1}{}
f \overline{g}'
\)
using integration by parts. If we change the domain by defining
D domain of operator = equals { set f continuous function ∈ element of C 1 space of continuously differentiable functions | such that
f continuous function ( 0 zero ) = equals 0 zero
} set
\(
D= \mathopen{}\left\{\, f\in \mathrm{C}^{1}\,\middle\vert\,
, f\mathopen{}\left( 0\right)\mathclose{}= 0,
\,\right\}\mathclose{}
\) ,
L linear operator ( f continuous function ) = equals f continuous function ′
\(
L\mathopen{}\left( f\right)\mathclose{}= f'
\)
makes
D domain of operator * ∩ intersection C 1 space of continuously differentiable functions = equals { set g continuous function ∈ element of C 1 space of continuously differentiable functions | such that
g continuous function ( 1 one ) = equals 0 zero
} set
\(
D^{*}\cap \mathrm{C}^{1}= \mathopen{}\left\{\, g\in \mathrm{C}^{1}\,\middle\vert\,
, g\mathopen{}\left( 1\right)\mathclose{}= 0,
\,\right\}\mathclose{}
\) .
In either case
L linear operator * | restricted to ( D domain of operator * ∩ intersection C 1 space of continuously differentiable functions ) = equals −
d d x vector derivative with respect to x
\(
L^{*}|\mathopen{}\left( D^{*}\cap \mathrm{C}^{1}\right)\mathclose{}= {-}
\frac{\mathrm{d}}{\mathrm{d}x}
\) .
In what follows, let L linear operator \( L \) be a linear operator on H Hilbert space \( H \) with a dense domain
D domain of operator = equals D domain ( L linear operator )
\(
D= \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\) .
Proposition IV.22
For densely defined closable L linear operator \( L \) , we have
L linear operator ¯ * = equals L linear operator *
\(
\overline{L}^{*}= L^{*}
\) .
Clearly,
D domain ( L linear operator ¯ * ) ⊆ subset D domain ( L linear operator * )
\(
\mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\)
(in general the domain of the adjoint of the extension will be a subset of the domain of the adjoint of the original).
Take
y vector ∈ element of L linear operator *
\(
y\in L^{*}
\) .
For
x vector ∈ element of D domain ( L linear operator ¯ )
\(
x\in \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}\right)\mathclose{}
\) ,
( tuple x vector , L linear operator ¯ ( x vector ) ) tuple ∈ element of G ( L linear operator ¯ ) = equals G ( L linear operator ) ¯
\(
\mathopen{}\left(x, \overline{L}\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( \overline{L}\right)\mathclose{}= \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}}
\) .
We get
( sequence x vector n integer ) sequence
\(
\mathopen{}\left({x}_{n}\right)\mathclose{}
\)
in
D domain ( L linear operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\)
with
x vector n integer → converges to x vector
\(
{x}_{n} \to x
\)
and
L linear operator ( x vector n integer ) → converges to L linear operator ¯ ( x vector )
\(
L\mathopen{}\left( {x}_{n}\right)\mathclose{} \to \overline{L}\mathopen{}\left( x\right)\mathclose{}
\) .
Then
〈 L linear operator ¯ ( x vector ) , y vector 〉 = equals lim limit n integer
〈 L linear operator ( x vector n integer ) , y vector 〉
= equals lim limit n integer
〈 x vector n integer , L linear operator * ( y vector ) 〉
= equals 〈 x vector , L linear operator * ( y vector ) 〉
.
\[
\mathopen{}\left\langle{}\overline{L}\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \lim_{n}{}
\mathopen{}\left\langle{}L\mathopen{}\left( {x}_{n}\right)\mathclose{}, y\right\rangle\mathclose{}
= \lim_{n}{}
\mathopen{}\left\langle{}{x}_{n}, L^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}
= \mathopen{}\left\langle{}x, L^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}
\text{.}
\] Thus
y vector ∈ element of D domain ( L linear operator ¯ * )
\(
y\in \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{}
\)
and
L linear operator ¯ * ( y vector ) = equals L linear operator * ( y vector )
\(
\overline{L}^{*}\mathopen{}\left( y\right)\mathclose{}= L^{*}\mathopen{}\left( y\right)\mathclose{}
\) .
Remark IV.23
Suppose L linear operator \( L \) is closed and densely defined. Then
G ( L linear operator )
\(
\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}
\)
is a Hilbert space, and we have the bounded linear map
E bounded linear operator : maps G ( L linear operator ) → to H Hilbert space
\(
E : \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{} \to H
\)
defined by
E bounded linear operator ( ( tuple x vector , L linear operator ( x vector ) ) tuple ) = equals x vector
\(
E\mathopen{}\left( \mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= x
\) .
Note
‖ E bounded linear operator ‖ ≤ less than or equal to 1 one
\(
\mathopen{}\left\lVert{}E\right\rVert\mathclose{}\leq 1
\) .
So, we get (bounded)
E bounded linear operator * : maps H Hilbert space → to G ( L linear operator )
\(
E^{*} : H \to \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}
\) .
Proposition IV.24
With L linear operator \( L \) and E bounded linear operator \( E \) as above,
Ker kernel ( E bounded linear operator ) = equals { set 0 zero } set
\(
\operatorname{Ker}\mathopen{}\left( E\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{}
\) ,
so E bounded linear operator * \( E^{*} \) has dense range in
G ( L linear operator )
\(
\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}
\) .
If
w vector ∈ element of H Hilbert space
\(
w\in H
\)
and
y vector = equals E bounded linear operator ( E bounded linear operator * ( w vector ) )
\(
y= E\mathopen{}\left( E^{*}\mathopen{}\left( w\right)\mathclose{}\right)\mathclose{}
\)
(so that
y vector ∈ element of D domain ( L linear operator )
\(
y\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\)
and
E bounded linear operator * ( w vector ) = equals ( tuple y vector , L linear operator ( y vector ) ) tuple
\(
E^{*}\mathopen{}\left( w\right)\mathclose{}= \mathopen{}\left(y, L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}
\) ),
then
L linear operator ( y vector ) ∈ element of D domain ( L linear operator * )
\(
L\mathopen{}\left( y\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\)
and
y vector + plus L linear operator * ( L linear operator ( y vector ) ) = equals w vector
\(
y+ L^{*}\mathopen{}\left( L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}= w
\) .
Ran range ( L linear operator ) ≡ equivalent L linear operator ( D domain ( L linear operator ) ) ⊆ subset
D domain ( L linear operator * )
¯
\(
\operatorname{Ran}\mathopen{}\left( L\right)\mathclose{}\equiv L\mathopen{}\left( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}\right)\mathclose{}\subseteq \overline{
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
}
\) .
Ker kernel ( E bounded linear operator ) = equals 0 zero
\(
\operatorname{Ker}\mathopen{}\left( E\right)\mathclose{}= 0
\)
is clear.
Ran range ( E bounded linear operator * ) ¯ = equals
( Ker kernel ( E bounded linear operator ) )
⊥ = equals G ( L linear operator )
\(
\overline{\operatorname{Ran}\mathopen{}\left( E^{*}\right)\mathclose{}}= {
\mathopen{}\left(\operatorname{Ker}\mathopen{}\left( E\right)\mathclose{}\right)\mathclose{}
}^{\perp}= \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}
\) .
Take
x vector ∈ element of D domain ( L linear operator )
\(
x\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\) .
Then
〈 x vector , y vector 〉 + plus 〈 L linear operator ( x vector ) , L linear operator ( y vector ) 〉 = equals 〈 ( tuple x vector , L linear operator ( x vector ) ) tuple , ( tuple y vector , L linear operator ( y vector ) ) tuple 〉 = equals 〈 ( tuple x vector , L linear operator ( x vector ) ) tuple , E bounded linear operator * ( w vector ) 〉 = equals 〈 E bounded linear operator ( ( tuple x vector , L linear operator ( x vector ) ) tuple ) , w vector 〉 = equals 〈 x vector , w vector 〉
.
\[
\mathopen{}\left\langle{}x, y\right\rangle\mathclose{}+\mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, L\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}, \mathopen{}\left(y, L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}, E^{*}\mathopen{}\left( w\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}E\mathopen{}\left( \mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}, w\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, w\right\rangle\mathclose{}
\text{.}
\]
Thus
〈 L linear operator ( x vector ) , L linear operator ( y vector ) 〉 = equals 〈 x vector , w vector - minus y vector 〉
\(
\mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, L\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, w-y\right\rangle\mathclose{}
\)
and
L linear operator * ( L linear operator ( y vector ) ) = equals w vector - minus y vector
\(
L^{*}\mathopen{}\left( L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}= w-y
\) .
Take
y vector ∈ element of D domain ( L linear operator )
\(
y\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\) .
Then
( tuple y vector , L linear operator ( y vector ) ) tuple ∈ element of G ( L linear operator ) = equals E bounded linear operator * ( H Hilbert space ) ¯
\(
\mathopen{}\left(y, L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}= \overline{ E^{*}\mathopen{}\left( H\right)\mathclose{}}
\) .
So get a sequence
( sequence
( tuple y vector n integer , L linear operator ( y vector n integer ) ) tuple
) sequence ∈ element of E bounded linear operator * ( H Hilbert space )
\(
\mathopen{}\left(
\mathopen{}\left({y}_{n}, L\mathopen{}\left( {y}_{n}\right)\mathclose{}\right)\mathclose{}
\right)\mathclose{}\in E^{*}\mathopen{}\left( H\right)\mathclose{}
\)
such that
( tuple y vector n integer , L linear operator ( y vector n integer ) ) tuple → converges to ( tuple y vector , L linear operator ( y vector ) ) tuple
\(
\mathopen{}\left({y}_{n}, L\mathopen{}\left( {y}_{n}\right)\mathclose{}\right)\mathclose{} \to \mathopen{}\left(y, L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}
\) .
Each
y vector n integer ∈ element of E bounded linear operator ( E bounded linear operator * ( H Hilbert space ) ) ⊆ subset D domain ( L linear operator )
\(
{y}_{n}\in E\mathopen{}\left( E^{*}\mathopen{}\left( H\right)\mathclose{}\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\) ,
and, by the second part,
L linear operator ( y vector n integer ) ∈ element of D domain ( L linear operator * )
\(
L\mathopen{}\left( {y}_{n}\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\)
and
L linear operator ( y vector ) = equals lim limit n integer
L linear operator ( y vector n integer )
∈ element of D domain ( L linear operator * ) ¯
\(
L\mathopen{}\left( y\right)\mathclose{}= \lim_{n}{}
L\mathopen{}\left( {y}_{n}\right)\mathclose{}
\in \overline{\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}}
\) .
Proposition IV.25
For densely defined L linear operator \( L \) , we have L linear operator \( L \) is closable if and only if
D domain ( L linear operator * )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\)
is dense in H Hilbert space \( H \) .
(⇒) Apply Proposition IV.24 to
L linear operator ¯
\(
\overline{L}
\) .
Then
Ran range ( L linear operator ¯ ) ⊆ subset
D domain ( L linear operator ¯ * )
¯ = equals
D domain ( L linear operator * )
¯
\(
\operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}\subseteq \overline{
\mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{}
}= \overline{
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
}
\) .
Also for
y vector ∈ element of
( Ran range ( L linear operator ¯ ) )
⊥
\(
y\in {
\mathopen{}\left(\operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}\right)\mathclose{}
}^{\perp}
\) ,
〈 L linear operator ¯ ( x vector ) , y vector 〉 = equals 0 zero
\(
\mathopen{}\left\langle{}\overline{L}\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= 0
\)
for all
x vector ∈ element of D domain ( L linear operator ¯ )
\(
x\in \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}\right)\mathclose{}
\) .
Thus
y vector ∈ element of D domain ( L linear operator ¯ * )
\(
y\in \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{}
\)
(with
L linear operator ¯ * ( y vector ) = equals 0 zero
\(
\overline{L}^{*}\mathopen{}\left( y\right)\mathclose{}= 0
\) ).
Thus
( Ran range ( L linear operator ¯ ) )
⊥ ⊆ subset D domain ( L linear operator ¯ * ) = equals D domain ( L linear operator * ) ¯
\(
{
\mathopen{}\left(\operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}\right)\mathclose{}
}^{\perp}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{}= \overline{\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}}
\)
and
H Hilbert space = equals
Ran range ( L linear operator ¯ ) + plus
( Ran range ( L linear operator ¯ ) )
⊥
¯ ⊆ subset D domain ( L linear operator * ) ¯
\(
H= \overline{
\operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}+{
\mathopen{}\left(\operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}\right)\mathclose{}
}^{\perp}
}\subseteq \overline{\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}}
\) .
(⇐) Suppose
x vector n integer → converges to 0 zero
\(
{x}_{n} \to 0
\)
in
D domain ( L linear operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\)
and
L linear operator ( x vector n integer ) → converges to w vector
\(
L\mathopen{}\left( {x}_{n}\right)\mathclose{} \to w
\) .
Then for all
y vector ∈ element of D domain ( L linear operator * )
\(
y\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\) ,
〈 L linear operator ( x vector n integer ) , y vector 〉 = equals 〈 x vector n integer , L linear operator * ( y vector ) 〉 → converges to 0 zero
\(
\mathopen{}\left\langle{}L\mathopen{}\left( {x}_{n}\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}{x}_{n}, L^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{} \to 0
\) .
Also
〈 L linear operator ( x vector n integer ) , y vector 〉 → converges to 〈 w vector , y vector 〉
\(
\mathopen{}\left\langle{}L\mathopen{}\left( {x}_{n}\right)\mathclose{}, y\right\rangle\mathclose{} \to \mathopen{}\left\langle{}w, y\right\rangle\mathclose{}
\) ,
so
〈 w vector , y vector 〉 = equals 0 zero
\(
\mathopen{}\left\langle{}w, y\right\rangle\mathclose{}= 0
\) .
Thus
w vector ∈ element of
D domain ( L linear operator * )
⊥ = equals { set 0 zero } set
\(
w\in {
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
}^{\perp}= \mathopen{}\left\{\, 0\,\right\}\mathclose{}
\) .
Back to Proposition IV.24 . We have
1 one + plus L linear operator * ( L linear operator )
: maps
E bounded linear map ( E bounded linear map * ( H Hilbert space ) )
→ to H Hilbert space
\(
1+ L^{*}\mathopen{}\left( L\right)\mathclose{}
:
E\mathopen{}\left( E^{*}\mathopen{}\left( H\right)\mathclose{}\right)\mathclose{}
\to H
\) .
For any
y vector ∈ element of D domain ( L linear operator * ( L linear operator ) )
\(
y\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\mathopen{}\left( L\right)\mathclose{}\right)\mathclose{}
\)
(i.e. y vector \( y \) with
L linear operator ( y vector ) ∈ element of D domain ( L linear operator * )
\(
L\mathopen{}\left( y\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\) ),
〈 ( 1 one + plus L linear operator * ( L linear operator ) ) ( y vector ) , y vector 〉 = equals 〈 y vector , y vector 〉 + plus 〈 L linear operator * ( L linear operator ( y vector ) ) , y vector 〉 = equals ‖ y vector ‖ 2 two + plus ‖ L linear operator ( y vector ) ‖ 2 two ≥ greater than or equal to ‖ y vector ‖ 2 two ≥ greater than or equal to 0 zero
.
\[
\mathopen{}\left\langle{}\mathopen{}\left(1+ L^{*}\mathopen{}\left( L\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( y\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}y, y\right\rangle\mathclose{}+\mathopen{}\left\langle{} L^{*}\mathopen{}\left( L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}, y\right\rangle\mathclose{}= {\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}^{2}+{\mathopen{}\left\lVert{}L\mathopen{}\left( y\right)\mathclose{}\right\rVert\mathclose{}}^{2}\geq {\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}^{2}\geq 0
\text{.}
\] So,
1 one + plus L linear operator * ( L linear operator )
\(
1+ L^{*}\mathopen{}\left( L\right)\mathclose{}
\)
is injective on
D domain ( L linear operator * times L linear operator ) ⊆ subset E bounded linear map ( E bounded linear map * ( H Hilbert space ) )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}\subseteq E\mathopen{}\left( E^{*}\mathopen{}\left( H\right)\mathclose{}\right)\mathclose{}
\) .
It follows that
E bounded linear map ( E bounded linear map * ( H Hilbert space ) ) = equals D domain ( L linear operator * times L linear operator )
\(
E\mathopen{}\left( E^{*}\mathopen{}\left( H\right)\mathclose{}\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}
\) ,
which is dense in H Hilbert space \( H \) .
Let
S operator : maps H Hilbert space → to
D domain ( L linear operator * ( L linear operator ) )
\(
S : H \to
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\mathopen{}\left( L\right)\mathclose{}\right)\mathclose{}
\)
be the inverse map to
1 one + plus L linear operator * times L linear operator
\(
1+ L^{*}L
\) .
For any
w vector ∈ element of H Hilbert space
\(
w\in H
\) ,
〈 ( 1 one + plus L linear operator * times L linear operator ) ( S operator ( w vector ) ) , w vector 〉 = equals 〈 w vector , S operator ( w vector ) 〉 ≥ greater than or equal to
‖ S operator ( w vector ) ‖
2 two
.
\[
\mathopen{}\left\langle{}\mathopen{}\left(1+ L^{*}L\right)\mathclose{}\mathopen{}\left( S\mathopen{}\left( w\right)\mathclose{}\right)\mathclose{}, w\right\rangle\mathclose{}= \mathopen{}\left\langle{}w, S\mathopen{}\left( w\right)\mathclose{}\right\rangle\mathclose{}\geq {\mathopen{}\left\lVert{}S\mathopen{}\left( w\right)\mathclose{}\right\rVert\mathclose{}}^{2}
\text{.}
\] Thus
‖ S operator ( w vector ) ‖ 2 two ≤ less than or equal to ‖ w vector ‖ times ‖ S operator ( w vector ) ‖
\(
{\mathopen{}\left\lVert{}S\mathopen{}\left( w\right)\mathclose{}\right\rVert\mathclose{}}^{2}\leq \mathopen{}\left\lVert{}w\right\rVert\mathclose{}\mathopen{}\left\lVert{}S\mathopen{}\left( w\right)\mathclose{}\right\rVert\mathclose{}
\) ,
‖ S operator ( w vector ) ‖ ≤ less than or equal to ‖ w vector ‖
\(
\mathopen{}\left\lVert{}S\mathopen{}\left( w\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}w\right\rVert\mathclose{}
\)
and
S operator ∈ element of ℒ bounded linear operators ( H Hilbert space )
\(
S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{}
\)
with
‖ S operator ‖ ≤ less than or equal to 1 one
\(
\mathopen{}\left\lVert{}S\right\rVert\mathclose{}\leq 1
\)
and
〈 w vector , S operator ( w vector ) 〉 ≥ greater than or equal to 0 zero
\(
\mathopen{}\left\langle{}w, S\mathopen{}\left( w\right)\mathclose{}\right\rangle\mathclose{}\geq 0
\)
for all
w vector ∈ element of H Hilbert space
\(
w\in H
\) .
Therefore
S operator ≥ greater than or equal to 0 zero
\(
S\geq 0
\) .
Write
S operator = equals
( 1 one + plus L linear operator * times L linear operator )
− 1 inverse
\(
S= {
\mathopen{}\left(1+ L^{*}L\right)\mathclose{}
}^{-1}
\) .
Also write
( 1 one + plus L linear operator * times L linear operator )
− 1 one 2 two
= equals
S operator
1 one 2 two
\(
{\mathopen{}\left(1+ L^{*}L\right)\mathclose{}}^{{-}\frac{1}{2}}= {S}^{\frac{1}{2}}
\) .
Proposition IV.26
Let L linear operator \( L \) be a closed, densely defined linear operator on H Hilbert space \( H \) . Then
D domain ( L linear operator * times L linear operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}
\)
is dense.
1 one + plus L linear operator * times L linear operator
: maps
D domain ( L linear operator * times L linear operator )
→ to H Hilbert space
\(
1+ L^{*}L
:
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}
\to H
\)
is bijective.
Its inverse
S bounded positive operator ≡ equivalent
( 1 one + plus L linear operator * times L linear operator )
− 1 inverse
: maps H Hilbert space → to
D domain ( L linear operator * times L linear operator ) ⊆ subset H Hilbert space
\(
S\equiv {
\mathopen{}\left(1+ L^{*}L\right)\mathclose{}
}^{-1}
: H \to
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}\subseteq H
\)
is a bounded positive operator with
‖ S bounded positive operator ‖ ≤ less than or equal to 1 one
\(
\mathopen{}\left\lVert{}S\right\rVert\mathclose{}\leq 1
\) .
L linear operator times S bounded positive operator 1 one 2 two = equals L linear operator times
( 1 one + plus L linear operator * times L linear operator )
− 1 one 2 two
\(
L{S}^{\frac{1}{2}}= L{\mathopen{}\left(1+ L^{*}L\right)\mathclose{}}^{{-}\frac{1}{2}}
\)
maps
S bounded positive operator 1 one 2 two ( H Hilbert space )
\(
{S}^{\frac{1}{2}}\mathopen{}\left( H\right)\mathclose{}
\)
(a dense subspace of H Hilbert space \( H \) ) boundedly into H Hilbert space \( H \) , and
‖ L linear operator times S bounded positive operator 1 one 2 two ‖ ≤ less than or equal to 1 one
\(
\mathopen{}\left\lVert{}L{S}^{\frac{1}{2}}\right\rVert\mathclose{}\leq 1
\) .
We have already shown all but the last part. Notice
S bounded positive operator 1 one 2 two ( H Hilbert space )
¯ = equals
( Ker kernel ( S bounded positive operator 1 one 2 two ) )
⊥ = equals
( Ker kernel ( S bounded positive operator ) )
⊥ = equals H Hilbert space
\(
\overline{
{S}^{\frac{1}{2}}\mathopen{}\left( H\right)\mathclose{}
}= {
\mathopen{}\left(\operatorname{Ker}\mathopen{}\left( {S}^{\frac{1}{2}}\right)\mathclose{}\right)\mathclose{}
}^{\perp}= {
\mathopen{}\left(\operatorname{Ker}\mathopen{}\left( S\right)\mathclose{}\right)\mathclose{}
}^{\perp}= H
\) ,
and
S bounded positive operator ( H Hilbert space ) = equals D domain ( L linear operator * times L linear operator ) ⊆ subset D domain of operator ( L linear operator )
\(
S\mathopen{}\left( H\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}\subseteq D\mathopen{}\left( L\right)\mathclose{}
\) .
So,
S bounded positive operator 1 one 2 two ( H Hilbert space ) ⊆ subset D domain ( L linear operator times S bounded positive operator 1 one 2 two )
\(
{S}^{\frac{1}{2}}\mathopen{}\left( H\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L{S}^{\frac{1}{2}}\right)\mathclose{}
\) .
Also,
‖ L linear operator ( S bounded positive operator 1 one 2 two ( S bounded positive operator 1 one 2 two ( x vector ) ) ) ‖
2 two
= equals
‖ L linear operator ( S bounded positive operator ( x vector ) ) ‖
2 two
= equals 〈 L linear operator ( S bounded positive operator ( x vector ) ) , L linear operator ( S bounded positive operator ( x vector ) ) 〉 = equals 〈 L linear operator * ( L linear operator ( S bounded positive operator ( x vector ) ) ) , S bounded positive operator ( x vector ) 〉 = equals 〈 ( 1 one - minus S bounded positive operator ) ( x vector ) , S bounded positive operator ( x vector ) 〉 ≤ less than or equal to
‖ S bounded positive operator 1 one 2 two ( x vector ) ‖
2 two
\[
{\mathopen{}\left\lVert{}L\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}\right\rVert\mathclose{}}^{2}= {\mathopen{}\left\lVert{}L\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \mathopen{}\left\langle{}L\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}, L\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{} L^{*}\mathopen{}\left( L\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}, S\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left(1-S\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}, S\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}\leq {\mathopen{}\left\lVert{}{S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}}^{2}
\]
because
( 1 one + plus L linear operator * times L linear operator ) ( S bounded positive operator ( x vector ) ) = equals x vector
\(
\mathopen{}\left(1+ L^{*}L\right)\mathclose{}\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}= x
\)
and
〈 x vector , S bounded positive operator ( x vector ) 〉 - minus ‖ S bounded positive operator ( x vector ) ‖ 2 two ≤ less than or equal to 〈 〈 x vector , S bounded positive operator ( x vector ) 〉 〉 = equals 〈 S bounded positive operator 1 one 2 two ( x vector ) , S bounded positive operator 1 one 2 two ( x vector ) 〉 = equals
‖ S bounded positive operator 1 one 2 two ( x vector ) ‖
2 two
.
\[
\mathopen{}\left\langle{}x, S\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}-{\mathopen{}\left\lVert{}S\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}}^{2}\leq \mathopen{}\left\langle{}\mathopen{}\left\langle{}x, S\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}{S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}= {\mathopen{}\left\lVert{}{S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}}^{2}
\text{.}
\]
Before dealing with self-adjoint operators, we consider a way to construct densely defined operators L linear operator \( L \) for which
D domain ( L linear operator ) = equals D domain ( L linear operator * )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\) .
Definition IV.27
A resolution of the identity in H Hilbert space \( H \) is an increasing projection-valued map
t real number ↦ is mapped to Q projection t real number
\(
t\mapsto {Q}_{t}
\)
on R real numbers \( \mathbb{R} \) such that
⋂ intersection t real number Q projection t real number ( H Hilbert space ) = equals { set 0 zero } set
\(
\bigcap_{t}{}{Q}_{t}\mathopen{}\left( H\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{}
\)
and
⋃ union t real number Q projection t real number ( H Hilbert space )
¯ = equals H Hilbert space
\(
\overline{
\bigcup_{t}{}{Q}_{t}\mathopen{}\left( H\right)\mathclose{}
}= H
\) . A spectral resolution of a bounded self-adjoint operator is the special case of this in which
Q projection t real number
\(
{Q}_{t}
\)
flattens out at 0 zero \( 0 \) once t real number \( t \) moves far enough to the left and at 1 one \( 1 \) once t real number \( t \) moves far enough to the right.
Remark IV.28 In general, we have
lim limit t real number → − ∞ infinity
Q projection t real number ( ξ vector )
= equals 0 zero = equals lim limit t real number → + ∞ infinity
( 1 one - minus Q projection t real number ) ( ξ vector )
\(
\lim_{t\to{-}\infty}{}
{Q}_{t}\mathopen{}\left( ξ\right)\mathclose{}
= 0= \lim_{t\to{+}\infty}{}
\mathopen{}\left(1-{Q}_{t}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}
\)
for all
ξ vector ∈ element of H Hilbert space
\(
ξ\in H
\)
by Lemma IV.10 .
Remark IV.29
For the spectral resolution
t real number ↦ is mapped to Q projection t real number
\(
t\mapsto {Q}_{t}
\) ,
write
E operator t real number = equals Q projection t real number - minus Q projection − t real number
\(
{E}_{t}= {Q}_{t}-{Q}_{{-}t}
\)
for
t real number > greater than 0 zero
\(
t\gt 0
\) ,
and let
H Hilbert space t real number = equals E operator t real number ( H Hilbert space )
\(
{H}_{t}= {E}_{t}\mathopen{}\left( H\right)\mathclose{}
\) .
Notice that
E operator s real number ≤ less than or equal to E operator t real number
\(
{E}_{s}\leq {E}_{t}
\)
for
0 zero < less than s real number ≤ less than or equal to t real number
\(
0\lt s\leq t
\)
and that
lim limit t real number → + ∞ infinity
E operator t real number ( ξ vector )
= equals ξ vector
\(
\lim_{t\to{+}\infty}{}
{E}_{t}\mathopen{}\left( ξ\right)\mathclose{}
= ξ
\)
for all ξ vector \( ξ \) , i.e. the union of the
H Hilbert space t real number
\(
{H}_{t}
\) 's
is dense in H Hilbert space \( H \) . Now fix a continuous function
f continuous function : maps R real numbers → to C complex numbers
\(
f : \mathbb{R} \to \mathbb{C}
\) .
For each
τ positive real number > greater than 0 zero
\(
τ\gt 0
\) ,
define the bounded operator
L linear operator ( tuple f continuous function , τ positive real number ) tuple = equals L linear operator τ positive real number = equals ∫ integral − τ positive real number τ positive real number f continuous function ( t real number ) d Q projection t real number
\(
{L}_{\mathopen{}\left(f, τ\right)\mathclose{}}= {L}_{τ}= \int _{{-}τ}^{τ}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}{Q}_{t}
\) .
As in our discussion above of continuous functions of bounded self-adjoint operators and Theorem IV.5 , the integral is the norm limit of Riemann-Stieltjes sums coming from partitions of
[ interval − τ positive real number , τ positive real number ] interval
\(
\mathopen{}\left[{-}τ, τ\right]\mathclose{}
\) .
Thus
L linear operator τ positive real number
\(
{L}_{τ}
\)
commutes with each
Q projection t real number
\(
{Q}_{t}
\) ,
and
L linear operator τ positive real number ( E operator τ positive real number ) = equals E operator τ positive real number ( L linear operator τ positive real number ) = equals L linear operator τ positive real number
\(
{L}_{τ}\mathopen{}\left( {E}_{τ}\right)\mathclose{}= {E}_{τ}\mathopen{}\left( {L}_{τ}\right)\mathclose{}= {L}_{τ}
\) .
Further,
‖ L linear operator τ positive real number ( ξ vector ) ‖
2 two
= equals ∫ integral − τ positive real number τ positive real number
| modulus f continuous function ( t real number ) | modulus
2 two
d
〈 Q projection t real number ( ξ vector ) , ξ vector 〉
\(
{\mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \int _{{-}τ}^{τ}{}
{\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}}^{2}
\,\mathrm{d}
\mathopen{}\left\langle{}{Q}_{t}\mathopen{}\left( ξ\right)\mathclose{}, ξ\right\rangle\mathclose{}
\)
for every ξ vector \( ξ \) , which makes
‖ L linear operator τ positive real number ‖ ≤ less than or equal to max maximum
| modulus t real number | modulus ≤ less than or equal to τ positive real number
| modulus f continuous function ( t real number ) | modulus
\(
\mathopen{}\left\lVert{}{L}_{τ}\right\rVert\mathclose{}\leq \max_{
\mathopen{}\left\lvert{}t\right\rvert\mathclose{}\leq τ
}{}\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}
\) .
Proposition IV.30 For
ξ vector ∈ element of H Hilbert space
\(
ξ\in H
\) ,
we have
sup supremum τ positive real number > greater than 0 zero
‖ L linear operator t real number ( ξ vector ) ‖
< less than ∞ infinity
\(
\sup_{τ\gt 0}{}
\mathopen{}\left\lVert{}{L}_{t}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}
\lt \infty
\)
if and only if
lim limit τ positive real number → + ∞ infinity
L linear operator τ positive real number ( ξ vector )
\(
\lim_{τ\to{+}\infty}{}
{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}
\)
exists (in norm).
(⇒) Take
0 zero < less than τ positive real number 0 zero < less than τ positive real number 1 one < less than ⋯
\(
0\lt {τ}_{0}\lt {τ}_{1}\lt \dotsb
\)
with
τ positive real number n integer → converges to ∞ infinity
\(
{τ}_{n} \to \infty
\)
and notice that
L linear operator τ positive real number 0 zero ( ξ vector ) = equals ∑ summation j integer = 1 one N integer
( L linear operator τ positive real number j integer - minus L linear operator τ positive real number j integer - minus 1 one ) ( ξ vector )
= equals L linear operator τ positive real number N integer ( ξ vector )
\[
{L}_{{τ}_{0}}\mathopen{}\left( ξ\right)\mathclose{}= \sum_{j=1}^{N}{}
\mathopen{}\left({L}_{{τ}_{j}}-{L}_{{τ}_{j-1}}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}
= {L}_{{τ}_{N}}\mathopen{}\left( ξ\right)\mathclose{}
\]
for every
N integer ≥ greater than or equal to 1 one
\(
N\geq 1
\) .
The summands are mutually orthogonal, so
‖ L linear operator τ positive real number 0 zero ( ξ vector ) ‖
2 two
+ plus ∑ summation j integer = 1 one N integer
‖ ( L linear operator τ positive real number j integer - minus L linear operator τ positive real number j integer - minus 1 one ) ( ξ vector ) ‖
2 two
= equals
‖ L linear operator τ positive real number N integer ( ξ vector ) ‖
2 two
.
\[
{\mathopen{}\left\lVert{}{L}_{{τ}_{0}}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}}^{2}+\sum_{j=1}^{N}{}
{\mathopen{}\left\lVert{}\mathopen{}\left({L}_{{τ}_{j}}-{L}_{{τ}_{j-1}}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}}^{2}
= {\mathopen{}\left\lVert{}{L}_{{τ}_{N}}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}}^{2}
\text{.}
\]
By the assumption, it follows that the series
L linear operator τ positive real number 0 zero ( ξ vector ) + plus ∑ summation j integer = 1 one N integer
( L linear operator τ positive real number j integer - minus L linear operator τ positive real number j integer - minus 1 one ) ( ξ vector )
\(
{L}_{{τ}_{0}}\mathopen{}\left( ξ\right)\mathclose{}+\sum_{j=1}^{N}{}
\mathopen{}\left({L}_{{τ}_{j}}-{L}_{{τ}_{j-1}}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}
\)
(with partial sums
L linear operator τ positive real number N integer
\(
{L}_{{τ}_{N}}
\) )
converges in norm, say to
η vector ∈ element of H Hilbert space
\(
η\in H
\) .
Notice that for
τ positive real number > greater than τ positive real number N integer
\(
τ\gt {τ}_{N}
\) ,
the vectors
η vector - minus L linear operator τ positive real number ( ξ vector )
\(
η-{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}
\)
and
( L linear operator τ positive real number - minus L linear operator τ positive real number N integer ) ( ξ vector )
\(
\mathopen{}\left({L}_{τ}-{L}_{{τ}_{N}}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}
\)
are orthogonal, so
‖ η vector - minus L linear operator τ positive real number ( ξ vector ) ‖ ≤ less than or equal to ‖ η vector - minus L linear operator τ positive real number N integer ( ξ vector ) ‖
\(
\mathopen{}\left\lVert{}η-{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}η-{L}_{{τ}_{N}}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}
\) .
The other direction is obvious.
Using the proposition, we define the operator
L linear operator = equals L linear operator f continuous function
\(
L= {L}_{f}
\)
on the domain
D domain ( L linear operator ) = equals { set ξ vector ∈ element of H Hilbert space | such that
sup supremum τ positive real number > greater than 0 zero
‖ L linear operator τ positive real number ( ξ vector ) ‖
< less than ∞ infinity
} set
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathopen{}\left\{\, ξ\in H\,\middle\vert\,
, \sup_{τ\gt 0}{}
\mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}
\lt \infty,
\,\right\}\mathclose{}
\)
by
L linear operator ( ξ vector ) = equals lim limit τ positive real number → + ∞ infinity
L linear operator τ positive real number ( ξ vector )
\(
L\mathopen{}\left( ξ\right)\mathclose{}= \lim_{τ\to{+}\infty}{}
{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}
\) ,
and write
L linear operator = equals ∫ integral − ∞ infinity ∞ infinity f continuous function ( t real number ) d
Q projection t real number
\(
L= \int _{{-}\infty}^{\infty}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}
{Q}_{t}
\) .
Notice that
⋃ union τ positive real number H Hilbert space τ positive real number ⊆ subset D domain ( L linear operator )
\(
\bigcup_{τ}{}{H}_{τ}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\)
(so L linear operator \( L \) is densely defined), and that L linear operator \( L \) coincides with
L linear operator τ positive real number
\(
{L}_{τ}
\)
on
H Hilbert space τ positive real number
\(
{H}_{τ}
\) .
If the given continuous function f continuous function \( f \) is bounded, then
D domain ( L linear operator ) = equals H Hilbert space
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= H
\)
and L linear operator \( L \) is bounded with
‖ L linear operator ‖ ≤ less than or equal to sup supremum t real number ∈ element of R real numbers | modulus f continuous function ( t real number ) | modulus
\(
\mathopen{}\left\lVert{}L\right\rVert\mathclose{}\leq \sup_{t\in \mathbb{R}}{}\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}
\) .
Proposition IV.31
D domain ( L linear operator ) = equals D domain ( L linear operator * )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\)
and
L linear operator * = equals L linear operator f continuous function ¯ complex conjugate
\(
L^{*}= {L}_{\overline{f}}
\) .
Calculating with Riemann-Stieltjes sums, we see that
L linear operator τ positive real number * = equals L linear operator ( tuple f continuous function ¯ complex conjugate , τ positive real number ) tuple
\(
{L}_{τ}^{*}= {L}_{{\mathopen{}\left(\overline{f}, τ\right)\mathclose{}}_{}}
\)
for
τ positive real number > greater than 0 zero
\(
τ\gt 0
\) ,
and
‖ L linear operator τ positive real number * ( η vector ) ‖
2 two
= equals ∫ integral − τ positive real number τ positive real number
| modulus f continuous function ( t real number ) | modulus
2 two
d
〈 Q projection t real number ( η vector ) , η vector 〉
= equals
‖ L linear operator τ positive real number ( η vector ) ‖
2 two
\[
{\mathopen{}\left\lVert{} {L}_{τ}^{*}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \int _{{-}τ}^{τ}{}
{\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}}^{2}
\,\mathrm{d}
\mathopen{}\left\langle{}{Q}_{t}\mathopen{}\left( η\right)\mathclose{}, η\right\rangle\mathclose{}
= {\mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}}^{2}
\] for all
η vector ∈ element of H Hilbert space
\(
η\in H
\) .
Notice this norm equality implies
D domain ( L linear operator ) = equals D domain ( L linear operator f continuous function ¯ complex conjugate )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( {L}_{\overline{f}}\right)\mathclose{}
\) .
To show that
D domain ( L linear operator * ) ⊆ subset D domain ( L linear operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\) ,
fix
η vector ∈ element of D domain ( L linear operator * )
\(
η\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\) ,
and let φ bounded linear functional \( φ \) be the bounded linear functional on
D domain ( L linear operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\)
defined by
φ bounded linear functional ( ξ vector ) = equals 〈 L linear operator ( ξ vector ) , η vector 〉
\(
φ\mathopen{}\left( ξ\right)\mathclose{}= \mathopen{}\left\langle{}L\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}
\) .
For
ξ vector ∈ element of H Hilbert space τ positive real number
\(
ξ\in {H}_{τ}
\) ,
we have
φ bounded linear functional ( ξ vector ) = equals 〈 L linear operator τ positive real number ( ξ vector ) , η vector 〉 = equals 〈 ξ vector , L linear operator τ positive real number * ( η vector ) 〉
\(
φ\mathopen{}\left( ξ\right)\mathclose{}= \mathopen{}\left\langle{}{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, {L}_{τ}^{*}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}
\) ,
so
‖ φ bounded linear functional | restricted to H Hilbert space τ positive real number ‖ = equals ‖ L linear operator τ positive real number * ( η vector ) ‖ = equals ‖ L linear operator τ positive real number ( η vector ) ‖
.
\[
\mathopen{}\left\lVert{}φ|{H}_{τ}\right\rVert\mathclose{}= \mathopen{}\left\lVert{} {L}_{τ}^{*}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}
\text{.}
\]
This makes
‖ L linear operator τ positive real number ( η vector ) ‖ ≤ less than or equal to ‖ φ bounded linear functional ‖
\(
\mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}φ\right\rVert\mathclose{}
\)
for all
τ positive real number > greater than 0 zero
\(
τ\gt 0
\) ,
which puts
η vector ∈ element of D domain ( L linear operator )
\(
η\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\) .
On the other hand, for
ξ vector
\(
ξ
\)
and
η vector
\(
η
\)
in
D domain ( L linear operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\) ,
we have
| modulus 〈 L linear operator ( ξ vector ) , η vector 〉 | modulus = equals lim limit τ positive real number → ∞ infinity
| modulus 〈 L linear operator τ positive real number ( ξ vector ) , η vector 〉 | modulus
= equals lim limit τ positive real number → ∞ infinity
| modulus 〈 ξ vector , L linear operator τ positive real number * ( η vector ) 〉 | modulus
≤ less than or equal to ‖ ξ vector ‖ times sup supremum τ positive real number > greater than 0 zero
‖ L linear operator τ positive real number ( η vector ) ‖
= equals ‖ ξ vector ‖ times ‖ L linear operator ( η vector ) ‖
.
\[
\mathopen{}\left\lvert{}\mathopen{}\left\langle{}L\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}\right\rvert\mathclose{}= \lim_{τ\to\infty}{}
\mathopen{}\left\lvert{}\mathopen{}\left\langle{}{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}\right\rvert\mathclose{}
= \lim_{τ\to\infty}{}
\mathopen{}\left\lvert{}\mathopen{}\left\langle{}ξ, {L}_{τ}^{*}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}\right\rvert\mathclose{}
\leq \mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}\sup_{τ\gt 0}{}
\mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}
= \mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}\mathopen{}\left\lVert{}L\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}
\text{.}
\] It follows that
D domain ( L linear operator ) ⊆ subset D domain ( L linear operator * )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\) ,
and hence
D domain ( L linear operator ) = equals D domain ( L linear operator * )
\(
\mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}
\) .
Finally, take
ξ vector ∈ element of D domain ( L linear operator )
\(
ξ\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}
\)
and
η vector ∈ element of H Hilbert space τ positive real number
\(
η\in {H}_{τ}
\) .
For all
t real number ≥ greater than or equal to τ positive real number
\(
t\geq τ
\) ,
we have
〈 L linear operator * ( ξ vector ) , η vector 〉 = equals 〈 ξ vector , L linear operator ( η vector ) 〉 = equals 〈 ξ vector , L linear operator t real number ( η vector ) 〉 = equals 〈 L linear operator ( tuple f continuous function ¯ complex conjugate , t real number ) tuple ( ξ vector ) , η vector 〉
.
\[
\mathopen{}\left\langle{} L^{*}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, L\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, {L}_{t}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}{L}_{{\mathopen{}\left(\overline{f}, t\right)\mathclose{}}_{}}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}
\text{.}
\] Letting t real number \( t \) approach ∞ infinity \( \infty \) , we get
〈 L linear operator * ( ξ vector ) , η vector 〉 = equals 〈 L linear operator f continuous function ¯ complex conjugate ( ξ vector ) , η vector 〉
\(
\mathopen{}\left\langle{} L^{*}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}{L}_{\overline{f}}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}
\) .
Since the union of the
H Hilbert space τ positive real number
\(
{H}_{τ}
\) 's
is dense in H Hilbert space \( H \) , we conclude that
L linear operator * ( ξ vector ) = equals L linear operator f continuous function ¯ complex conjugate ( ξ vector )
\(
L^{*}\mathopen{}\left( ξ\right)\mathclose{}= {L}_{\overline{f}}\mathopen{}\left( ξ\right)\mathclose{}
\) .
Definition IV.32
An operator T operator \( T \) in H Hilbert space \( H \) is self-adjoint provided
D domain ( T operator ) = equals D domain ( T operator * )
\(
\mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( T^{*}\right)\mathclose{}
\)
and that
〈 T operator ( ξ vector ) , η vector 〉 = equals 〈 ξ vector , T operator ( η vector ) 〉
\(
\mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, T\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}
\)
for all
ξ vector \( ξ \) and η vector \( η \) in
D domain ( T operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) .
Remark IV.33
Such an operator is necessarily closed because the adjoint of any operator is closed.
Example IV.34
For any resolution of the identity
t real number ↦ is mapped to Q projection t real number
\(
t\mapsto {Q}_{t}
\) ,
the operator
L linear operator f continuous function
\(
{L}_{f}
\)
is self-adjoint for real f continuous function \( f \) by the proposition above.
Example IV.35
Let
H Hilbert space = equals L 2 Lebesgue space ( X normed linear space μ measure )
\(
H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( X, μ\right)\mathclose{}
\) .
For any measurable function
α measurable function : maps X normed linear space → to
( interval − ∞ infinity , ∞ infinity ) interval
\(
α : X \to
\mathopen{}\left({-}\infty, \infty\right)\mathclose{}
\) ,
the operator of multiplication by α measurable function \( α \) on the domain
{ set ξ function ∈ element of L 2 Lebesgue space | such that
α measurable function ( ξ function ) ∈ element of L 2 Lebesgue space
} set
\(
\mathopen{}\left\{\, ξ\in \mathrm{L}^{\mathrm{2}}\,\middle\vert\,
, α\mathopen{}\left( ξ\right)\mathclose{}\in \mathrm{L}^{\mathrm{2}},
\,\right\}\mathclose{}
\)
is densely defined and self-adjoint. The given domain is dense because it contains
L 2 Lebesgue space ( | modulus α measurable function | modulus − 1 inverse ( [ interval n integer , − n integer ] interval ) )
\(
\mathrm{L}^{\mathrm{2}}\mathopen{}\left( {\mathopen{}\left\lvert{}α\right\rvert\mathclose{}}^{-1}\mathopen{}\left( \mathopen{}\left[n, {-}n\right]\mathclose{}\right)\mathclose{}\right)\mathclose{}
\)
for every n integer \( n \) . The argument for self-adjointness resembles the proof of the proposition above. Observe that letting
Q projection t real number \( {Q}_{t} \) equal the projection on
L 2 Lebesgue space ( α measurable function − 1 inverse ( ( interval − ∞ infinity , t real number ] interval ) )
\(
\mathrm{L}^{\mathrm{2}}\mathopen{}\left( {α}^{-1}\mathopen{}\left( \mathopen{}\left({-}\infty, t\right]\mathclose{}\right)\mathclose{}\right)\mathclose{}
\)
gives a resolution of the identity.
Remark IV.36
Our version of the spectral theorem, coming up, says that Example IV.34 with
f continuous function ( t real number ) = equals t real number
\(
f\mathopen{}\left( t\right)\mathclose{}= t
\)
is universal. Another version of the spectral theorem, which we will not prove, says that Example IV.35 is also universal.
We now proceed to show that for any densely defined self-adjoint operator T operator \( T \) , there is a resolution of the identity
t real number ↦ is mapped to Q projection t real number
\(
t\mapsto {Q}_{t}
\)
such that
T operator = equals ∫ integral − ∞ infinity ∞ infinity t real number d
Q projection t real number
\(
T= \int _{{-}\infty}^{\infty}{}t\,\mathrm{d}
{Q}_{t}
\)
(including coincidence of the domains). The main idea is to change variables in the spectral resolution of the bounded self-adjoint operator
A self-adjoint operator = equals T operator times
( 1 one + plus T operator 2 two )
− 1 one 2 two
\(
A= T{\mathopen{}\left(1+{T}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}
\)
to obtain the desired spectral resolution of the identity in H Hilbert space \( H \) .
From Proposition IV.26 , with
L linear operator = equals L linear operator * = equals T operator
\(
L= L^{*}= T
\) ,
we have the bounded positive operator
S operator = equals
( 1 one + plus T operator 2 two )
− 1 inverse
\(
S= {
\mathopen{}\left(1+{T}^{2}\right)\mathclose{}
}^{-1}
\)
mapping H Hilbert space \( H \) injectively onto
D domain ( T operator 2 two ) = equals { set ξ vector ∈ element of D domain ( T operator ) | such that
T operator ( ξ vector ) ∈ element of D domain ( T operator )
} set
\(
\mathop{\mathcal{D}}\mathopen{}\left( {T}^{2}\right)\mathclose{}= \mathopen{}\left\{\, ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}\,\middle\vert\,
, T\mathopen{}\left( ξ\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{},
\,\right\}\mathclose{}
\) . Notice that this makes
S operator ( H Hilbert space ) ⊆ subset D domain ( T operator )
\(
S\mathopen{}\left( H\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) .
Lemma IV.37
T operator ( S operator ( ξ vector ) ) = equals S operator ( T operator ( ξ vector ) )
\(
T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}
\)
for all
ξ vector ∈ element of D domain ( T operator )
\(
ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) .
Notice that
T operator 2 two ( S operator ( D domain ( T operator ) ) ) = equals ( 1 one - minus S operator ) ( D domain ( T operator ) ) ⊆ subset D domain ( T operator )
\(
{T}^{2}\mathopen{}\left( S\mathopen{}\left( \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left(1-S\right)\mathclose{}\mathopen{}\left( \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) ,
so the following calculation makes sense for
ξ vector ∈ element of D domain ( T operator )
\(
ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) :
( 1 one + plus T operator 2 two ) ( T operator ( S operator ( ξ vector ) ) ) = equals T operator ( ( I + plus T operator 2 two ) ( S operator ( ξ vector ) ) ) = equals T operator ( ξ vector ) = equals ( 1 one + plus T operator 2 two ) ( S operator ( T operator ( ξ vector ) ) )
.
\[
\mathopen{}\left(1+{T}^{2}\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( \mathopen{}\left(I+{T}^{2}\right)\mathclose{}\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( ξ\right)\mathclose{}= \mathopen{}\left(1+{T}^{2}\right)\mathclose{}\mathopen{}\left( S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}
\text{.}
\]
Since
T operator ( S operator ( ξ vector ) )
\(
T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}
\)
and
S operator ( T operator ( ξ vector ) )
\(
S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}
\)
are both in
D domain ( T operator 2 two )
\(
\mathop{\mathcal{D}}\mathopen{}\left( {T}^{2}\right)\mathclose{}
\)
and
1 one + plus T operator 2 two
\(
1+{T}^{2}
\)
is injective on
D domain ( T operator 2 two )
\(
\mathop{\mathcal{D}}\mathopen{}\left( {T}^{2}\right)\mathclose{}
\) ,
we get
T operator ( S operator ( ξ vector ) ) = equals S operator ( T operator ( ξ vector ) )
\(
T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}
\)
as promised.
The following lemma improves slightly on part 4 of Proposition IV.26 .
Lemma IV.38
S operator 1 one 2 two times T operator ⊆ subset D domain ( T operator )
\(
{S}^{\frac{1}{2}}T\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) .
For
η vector ∈ element of H Hilbert space
\(
η\in H
\)
and
ξ vector ∈ element of D domain ( T operator )
\(
ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) ,
we have
| modulus 〈 T operator ( ξ vector ) , S operator 1 one 2 two ( η vector ) 〉 | modulus = equals | modulus 〈 S operator 1 one 2 two ( T operator ( ξ vector ) ) , η vector 〉 | modulus ≤ less than or equal to ‖ S operator 1 one 2 two ( T operator ( ξ vector ) ) ‖ times ‖ η vector ‖
.
\[
\mathopen{}\left\lvert{}\mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\mathopen{}\left\langle{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, η\right\rangle\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right\rVert\mathclose{}\mathopen{}\left\lVert{}η\right\rVert\mathclose{}
\text{.}
\]
Furthermore, using
T operator ( S operator ( ξ vector ) ) ∈ element of D domain ( T operator ) = equals D domain ( T operator * )
\(
T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( T^{*}\right)\mathclose{}
\) ,
‖ S operator 1 one 2 two ( T operator ( ξ vector ) ) ‖
2 two
= equals 〈 S operator 1 one 2 two ( T operator ( ξ vector ) ) , S operator 1 one 2 two ( T operator ( ξ vector ) ) 〉 = equals 〈 S operator ( T operator ( ξ vector ) ) , T operator ( ξ vector ) 〉 = equals 〈 T operator ( S operator ( ξ vector ) ) , T operator ( ξ vector ) 〉 = equals 〈 T operator 2 two ( S operator ( ξ vector ) ) , ξ vector 〉 = equals 〈 ( 1 one - minus S operator ) ( ξ vector ) , ξ vector 〉 ≤ less than or equal to ‖ ξ vector ‖ 2 two
,
\[
{\mathopen{}\left\lVert{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \mathopen{}\left\langle{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, T\mathopen{}\left( ξ\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, T\mathopen{}\left( ξ\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}{T}^{2}\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, ξ\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left(1-S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, ξ\right\rangle\mathclose{}\leq {\mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}}^{2}
\text{,}
\]
so
| modulus 〈 T operator ( ξ vector ) , S operator 1 one 2 two ( η vector ) 〉 | modulus ≤ less than or equal to ‖ ξ vector ‖ times ‖ η vector ‖
.
\(
\mathopen{}\left\lvert{}\mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}\mathopen{}\left\lVert{}η\right\rVert\mathclose{}
\text{.}
\)
This means
S operator 1 one 2 two ( η vector ) ∈ element of D domain ( T operator * ) = equals D domain ( T operator )
\(
{S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( T^{*}\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) .
We know from Proposition IV.26 that
0 zero ≤ less than or equal to S operator ≤ less than or equal to 1 one
\(
0\leq S\leq 1
\) ,
so functional calculus gives us
f continuous function ( S operator )
\(
f\mathopen{}\left( S\right)\mathclose{}
\)
for
f continuous function ∈ element of C space of continuous functions ( [ interval 0 zero , 1 one ] interval )
\(
f\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\) .
Lemma IV.39
For every
f continuous function ∈ element of C space of continuous functions ( [ interval 0 zero , 1 one ] interval )
\(
f\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}
\) ,
the operator
f continuous function ( S operator )
\(
f\mathopen{}\left( S\right)\mathclose{}
\)
maps
D domain ( T operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\)
into itself and commutes with T operator \( T \) on
D domain ( T operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) .
We know this is true for
f continuous function ( S operator ) = equals S operator
\(
f\mathopen{}\left( S\right)\mathclose{}= S
\) .
Fix
ξ vector ∈ element of D domain ( T operator )
\(
ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) .
Then
S operator 2 two ( ξ vector ) ∈ element of S operator ( T operator ) ⊆ subset D domain ( T operator )
\(
{S}^{2}\mathopen{}\left( ξ\right)\mathclose{}\in S\mathopen{}\left( T\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) ,
and
S operator 2 two ( T operator ( ξ vector ) ) = equals S operator ( T operator ( S operator ( ξ vector ) ) ) = equals T operator ( S operator 2 two ( ξ vector ) )
\(
{S}^{2}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= S\mathopen{}\left( T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( {S}^{2}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}
\) .
And so on: the assertion of the lemma holds when f continuous function \( f \) is a polynomial. For general continuous f continuous function \( f \) , get a sequence
( sequence p polynomial n integer ) sequence
\(
\mathopen{}\left({p}_{n}\right)\mathclose{}
\)
of polynomials converging uniformly to f continuous function \( f \) on
[ interval 0 zero , 1 one ] interval
\(
\mathopen{}\left[0, 1\right]\mathclose{}
\) ,
so
‖ p polynomial n integer ( S operator ) - minus f continuous function ( S operator ) ‖ → converges to 0 zero
\(
\mathopen{}\left\lVert{}{p}_{n}\mathopen{}\left( S\right)\mathclose{}-f\mathopen{}\left( S\right)\mathclose{}\right\rVert\mathclose{} \to 0
\) .
In
G ( T operator )
\(
\mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}
\) ,
we have
( tuple p polynomial n integer ( S operator ) ( ξ vector ) , T operator ( p polynomial n integer ( S operator ) ( ξ vector ) ) ) tuple = equals ( tuple p polynomial n integer ( S operator ) ( ξ vector ) , p polynomial n integer ( S operator ) ( T operator ( ξ vector ) ) ) tuple → converges to ( tuple f continuous function ( S operator ) ( ξ vector ) , f continuous function ( S operator ) ( T operator ( ξ vector ) ) ) tuple
.
\[
\mathopen{}\left({p}_{n}\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, T\mathopen{}\left( {p}_{n}\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left({p}_{n}\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, {p}_{n}\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{} \to \mathopen{}\left(f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}
\text{.}
\]
This puts
( tuple f continuous function ( S operator ) ( ξ vector ) , f continuous function ( S operator ) ( T operator ( ξ vector ) ) ) tuple ∈ element of G ( T operator )
\(
\mathopen{}\left(f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}
\)
because T operator \( T \) is a closed operator, so
f continuous function ( S operator ) ( ξ vector ) ∈ element of D domain ( T operator )
\(
f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\)
and
T operator ( f continuous function ( S operator ) ( ξ vector ) ) = equals f continuous function ( S operator ) ( T operator ( ξ vector ) )
\(
T\mathopen{}\left( f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}
\) .
Let
A self-adjoint operator = equals T operator times S operator 1 one 2 two
\(
A= T{S}^{\frac{1}{2}}
\) .
By Lemma IV.38 , this defines A self-adjoint operator \( A \) on all of H Hilbert space \( H \) .
From Proposition IV.26 we know that A self-adjoint operator \( A \) is bounded, with
‖ A self-adjoint operator ‖ ≤ less than or equal to 1 one
\(
\mathopen{}\left\lVert{}A\right\rVert\mathclose{}\leq 1
\) .
Lemma IV.40
A self-adjoint operator = equals A self-adjoint operator *
\(
A= A^{*}
\) and
A self-adjoint operator 2 two = equals 1 one - minus S operator
\(
{A}^{2}= 1-S
\) .
For
ξ vector ∈ element of D domain ( T operator )
\(
ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\)
and
η vector ∈ element of H Hilbert space
\(
η\in H
\) ,
we use Lemma IV.38 and Lemma IV.39 to obtain
〈 A self-adjoint operator ( ξ vector ) , η vector 〉 = equals 〈 T operator ( S operator 1 one 2 two ( ξ vector ) ) , η vector 〉 = equals 〈 S operator 1 one 2 two ( T operator ( ξ vector ) ) , η vector 〉 = equals 〈 T operator ( ξ vector ) , S operator 1 one 2 two ( η vector ) 〉 = equals 〈 ξ vector , T operator ( S operator 1 one 2 two ( η vector ) ) 〉 = equals 〈 ξ vector , A self-adjoint operator ( η vector ) 〉
.
\[
\mathopen{}\left\langle{}A\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}T\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, T\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, A\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}
\text{.}
\]
Since A self-adjoint operator \( A \) is bounded and
D domain ( T operator ) ¯ = equals H Hilbert space
\(
\overline{\mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}}= H
\) ,
this works for any
ξ vector ∈ element of H Hilbert space
\(
ξ\in H
\) .
For the second claim, for
ξ vector ∈ element of D domain ( T operator )
\(
ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) ,
we again use Lemma IV.39 to obtain
A self-adjoint operator 2 two ( ξ vector ) = equals A self-adjoint operator ( T operator ( S operator 1 one 2 two ( ξ vector ) ) ) = equals A self-adjoint operator ( S operator 1 one 2 two ( T operator ( ξ vector ) ) ) = equals T operator ( S operator ( T operator ( ξ vector ) ) ) = equals T operator 2 two ( S operator ( ξ vector ) ) = equals ( 1 one - minus S operator ) ( ξ vector )
,
\[
{A}^{2}\mathopen{}\left( ξ\right)\mathclose{}= A\mathopen{}\left( T\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= A\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= {T}^{2}\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left(1-S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}
\text{,}
\]
so the bounded operators
A self-adjoint operator 2 two
\(
{A}^{2}
\)
and
1 one - minus S operator
\(
1-S
\)
agree on a dense subspace.
Let A self-adjoint operator \( A \) have spectral resolution
λ real number ↦ is mapped to P projection λ real number
\(
λ\mapsto {P}_{λ}
\) .
Then
P projection λ real number = equals 0 zero
\(
{P}_{λ}= 0
\)
for
λ real number < less than − 1 one
\(
λ\lt {-}1
\)
and
P projection λ real number = equals 1 one
\(
{P}_{λ}= 1
\) for
λ real number > greater than 1 one
\(
λ\gt 1
\) . Further,
± 1 one
\(
{\pm}1
\)
are not eigenvalues of A self-adjoint operator \( A \) , because
1 one - minus A self-adjoint operator 2 two = equals B self-adjoint operator
\(
1-{A}^{2}= B
\) ,
whose kernel is
{ set 0 zero } set
\(
\mathopen{}\left\{\, 0\,\right\}\mathclose{}
\) .
By Proposition IV.12 , this means
⋂ intersection t real number ≤ less than or equal to − 1 one P projection t real number ( H Hilbert space ) = equals { set 0 zero } set
\(
\bigcap_{t\leq {-}1}{}{P}_{t}\mathopen{}\left( H\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{}
\)
and
⋃ union t real number ≤ less than or equal to − 1 one P projection t real number ( H Hilbert space )
¯ = equals H Hilbert space
\(
\overline{
\bigcup_{t\leq {-}1}{}{P}_{t}\mathopen{}\left( H\right)\mathclose{}
}= H
\) .
Consider the strictly increasing function
Φ function : maps R real numbers → to
( interval − 1 one , 1 one ) interval
\(
Φ : \mathbb{R} \to
\mathopen{}\left({-}1, 1\right)\mathclose{}
\)
defined by
Φ function ( t real number ) = equals t real number times
( 1 one + plus t real number 2 two )
− 1 one 2 two
\(
Φ\mathopen{}\left( t\right)\mathclose{}= t{\mathopen{}\left(1+{t}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}
\) .
Let
Q projection t real number = equals P projection Φ function ( t real number )
\(
{Q}_{t}= {P}_{Φ\mathopen{}\left( t\right)\mathclose{}}
\) .
This makes
⋂ intersection t real number Q projection t real number ( H Hilbert space ) = equals ⋂ intersection t real number ≤ less than or equal to − 1 one P projection t real number ( H Hilbert space ) = equals { set 0 zero } set
\(
\bigcap_{t}{}{Q}_{t}\mathopen{}\left( H\right)\mathclose{}= \bigcap_{t\leq {-}1}{}{P}_{t}\mathopen{}\left( H\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{}
\)
and
⋃ union t real number Q projection t real number ( H Hilbert space )
¯ = equals
⋃ union t real number ≤ less than or equal to − 1 one P projection t real number ( H Hilbert space )
¯ = equals H Hilbert space
\(
\overline{
\bigcup_{t}{}{Q}_{t}\mathopen{}\left( H\right)\mathclose{}
}= \overline{
\bigcup_{t\leq {-}1}{}{P}_{t}\mathopen{}\left( H\right)\mathclose{}
}= H
\) ,
so
t real number ↦ is mapped to Q projection t real number
\(
t\mapsto {Q}_{t}
\)
is a resolution of the identity. Define the self-adjoint operator B self-adjoint operator \( B \) by
B self-adjoint operator = equals ∫ integral − ∞ infinity ∞ infinity t real number d
Q projection t real number
.
\[
B= \int _{{-}\infty}^{\infty}{}t\,\mathrm{d}
{Q}_{t}
\text{.}
\]
Our mission will be accomplished once we show that
D domain ( B self-adjoint operator ) = equals D domain ( T operator )
\(
\mathop{\mathcal{D}}\mathopen{}\left( B\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\)
and
B self-adjoint operator = equals T operator
\(
B= T
\) ,
that is, that
G ( K compact operator ) = equals G ( G group T operator )
\(
\mathop{\mathcal{G}}\mathopen{}\left( K\right)\mathclose{}= \mathop{\mathcal{G}}\mathopen{}\left( G, T\right)\mathclose{}
\) .
As before, write
E bounded linear map τ positive real number = equals Q projection τ positive real number - minus Q projection − τ positive real number = equals P projection Φ function ( τ positive real number ) - minus P projection − Φ function ( τ positive real number )
\(
{E}_{τ}= {Q}_{τ}-{Q}_{{-}τ}= {P}_{Φ\mathopen{}\left( τ\right)\mathclose{}}-{P}_{{-}Φ\mathopen{}\left( τ\right)\mathclose{}}
\)
for
τ positive real number > greater than 0 zero
\(
τ\gt 0
\) ,
and
H Hilbert space τ positive real number = equals E bounded linear map τ positive real number ( T operator )
\(
{H}_{τ}= {E}_{τ}\mathopen{}\left( T\right)\mathclose{}
\) .
What happens when we compress
B self-adjoint operator \( B \) , A self-adjoint operator \( A \) , and T operator \( T \) to
H Hilbert space τ positive real number
\(
{H}_{τ}
\) ? Since
E bounded linear map τ positive real number
\(
{E}_{τ}
\)
is a difference of spectral projections for B self-adjoint operator \( B \) and for A self-adjoint operator \( A \) , the subspace
H Hilbert space τ positive real number
\(
{H}_{τ}
\)
is invariant for both of these operators, and the compressions
B self-adjoint operator τ positive real number = equals B self-adjoint operator ( E bounded linear map τ positive real number ) = equals E bounded linear map τ positive real number ( B self-adjoint operator )
\(
{B}_{τ}= B\mathopen{}\left( {E}_{τ}\right)\mathclose{}= {E}_{τ}\mathopen{}\left( B\right)\mathclose{}
\)
and
A self-adjoint operator τ positive real number = equals A self-adjoint operator ( E bounded linear map τ positive real number ) = equals E bounded linear map τ positive real number ( A self-adjoint operator )
\(
{A}_{τ}= A\mathopen{}\left( {E}_{τ}\right)\mathclose{}= {E}_{τ}\mathopen{}\left( A\right)\mathclose{}
\)
are given as spectral integrals by
B self-adjoint operator τ positive real number = equals ∫ integral − τ positive real number τ positive real number t real number d Q projection t real number
\[
{B}_{τ}= \int _{{-}τ}^{τ}{}t\,\mathrm{d}{Q}_{t}
\]
and
A self-adjoint operator τ positive real number = equals ∫ integral − Φ function ( τ positive real number ) Φ function ( τ positive real number ) λ real number d P projection λ real number
.
\[
{A}_{τ}= \int _{{-}Φ\mathopen{}\left( τ\right)\mathclose{}}^{Φ\mathopen{}\left( τ\right)\mathclose{}}{}λ\,\mathrm{d}{P}_{λ}
\text{.}
\]
They satisfy
− ∞ infinity < less than − τ positive real number ≤ less than or equal to B self-adjoint operator τ positive real number ≤ less than or equal to τ positive real number < less than ∞ infinity
\[
{-}\infty\lt {-}τ\leq {B}_{τ}\leq τ\lt \infty
\]
and
− 1 one < less than − Φ function ( τ positive real number ) ≤ less than or equal to A self-adjoint operator τ positive real number ≤ less than or equal to Φ function ( τ positive real number ) < less than 1 one
.
\[
{-}1\lt {-}Φ\mathopen{}\left( τ\right)\mathclose{}\leq {A}_{τ}\leq Φ\mathopen{}\left( τ\right)\mathclose{}\lt 1
\text{.}
\]
Notice this makes
1 one - minus A self-adjoint operator τ positive real number 2 two
\(
1-{{A}_{τ}}^{2}
\)
invertible.
Lemma IV.41
For
τ positive real number > greater than 0 zero
\(
τ\gt 0
\) :
(i)
H Hilbert space τ positive real number ⊆ subset D domain ( T operator )
\(
{H}_{τ}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\) ;
and (ii) for
ξ vector ∈ element of H Hilbert space τ positive real number
\(
ξ\in {H}_{τ}
\) ,
we have
T operator ( ξ vector ) = equals A self-adjoint operator τ positive real number times
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
− 1 one 2 two
times ξ vector
\(
T\mathopen{}\left( ξ\right)\mathclose{}= {A}_{τ}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}ξ
\) .
Take
ξ vector ∈ element of H Hilbert space τ positive real number
\(
ξ\in {H}_{τ}
\) .
For (i), observe
( 1 one - minus A self-adjoint operator 2 two ) times ξ vector = equals ( 1 one - minus A self-adjoint operator τ positive real number 2 two ) times ξ vector
\(
\mathopen{}\left(1-{A}^{2}\right)\mathclose{}ξ= \mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}ξ
\) ,
and thus
ξ vector = equals
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
− 1 one
times ( 1 one - minus A self-adjoint operator 2 two ) times ξ vector = equals ( 1 one - minus A self-adjoint operator 2 two ) times
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
− 1 one
times ξ vector = equals S operator times
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
− 1 one
times ξ vector ∈ element of S operator ( T operator ) ⊆ subset D domain ( T operator )
.
\[
ξ= {\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}1}\mathopen{}\left(1-{A}^{2}\right)\mathclose{}ξ= \mathopen{}\left(1-{A}^{2}\right)\mathclose{}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}1}ξ= S{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}1}ξ\in S\mathopen{}\left( T\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}
\text{.}
\]
For (ii), recall
A self-adjoint operator = equals T operator times S operator 1 one 2 two = equals T operator times
( 1 one - minus A self-adjoint operator 2 two )
1 one 2 two
\(
A= T{S}^{\frac{1}{2}}= T{\mathopen{}\left(1-{A}^{2}\right)\mathclose{}}^{\frac{1}{2}}
\) ,
so
A self-adjoint operator τ positive real number = equals T operator times
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
1 one 2 two
\(
{A}_{τ}= T{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{\frac{1}{2}}
\) .
Evaluating at ξ vector \( ξ \) , we get
T operator times ξ vector = equals T operator times
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
1 one 2 two
times
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
− 1 one 2 two
times ξ vector = equals A self-adjoint operator τ positive real number times
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
− 1 one 2 two
times ξ vector
.
\[
Tξ= T{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{\frac{1}{2}}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}ξ= {A}_{τ}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}ξ
\text{.}
\]
Thus T operator \( T \) maps
H Hilbert space τ positive real number
\(
{H}_{τ}
\)
boundedly into itself, and commutes with
E bounded linear map τ positive real number
\(
{E}_{τ}
\) .
The compression
F bounded linear map τ positive real number
\(
{F}_{τ}
\)
given by
F bounded linear map τ positive real number = equals T operator times E bounded linear map τ positive real number = equals E bounded linear map τ positive real number times T operator
\(
{F}_{τ}= T{E}_{τ}= {E}_{τ}T
\)
is, by part (ii) of the lemma,
A self-adjoint operator τ positive real number times
( 1 one - minus A self-adjoint operator τ positive real number 2 two )
− 1 one 2 two
\(
{A}_{τ}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}
\) .
This means
F bounded linear map τ positive real number
\(
{F}_{τ}
\)
is given by the spectral integral
F bounded linear map τ positive real number = equals ∫ integral − Φ function ( τ positive real number ) Φ function ( τ positive real number )
λ real number
1 one - minus λ real number 2 two
d P projection λ real number
.
\[
{F}_{τ}= \int _{{-}Φ\mathopen{}\left( τ\right)\mathclose{}}^{Φ\mathopen{}\left( τ\right)\mathclose{}}{}\frac{λ}{\sqrt{1-{λ}^{2}}}\,\mathrm{d}{P}_{λ}
\text{.}
\]
Notice that the integrand is
Φ function − 1 inverse ( λ real number )
\(
{Φ}^{-1}\mathopen{}\left( λ\right)\mathclose{}
\) .
Lemma IV.42
F bounded linear map τ positive real number = equals B self-adjoint operator τ positive real number
\(
{F}_{τ}= {B}_{τ}
\)
for all
τ positive real number > greater than 0 zero
\(
τ\gt 0
\) .
Both integrals are norm limits of Riemann-Stieltjes sums. Just as in the scalar case, the change of variables
t real number = equals Φ function − 1 inverse ( λ real number )
\(
t= {Φ}^{-1}\mathopen{}\left( λ\right)\mathclose{}
\)
transforms Riemann-Stieltjes sums for the integral in λ real number \( λ \) for
F bounded linear map τ positive real number
\(
{F}_{τ}
\)
into Riemann-Stieltjes sums for the integral in t real number \( t \) for
B self-adjoint operator τ positive real number
\(
{B}_{τ}
\) .
The reverse change of variables
λ real number = equals Φ function ( t real number )
\(
λ= Φ\mathopen{}\left( t\right)\mathclose{}
\)
inverts this transformation.
Now we can prove the theorem.
Theorem IV.43
For every densely defined self-adjoint operator T operator \( T \) in H Hilbert space \( H \) , there is a resolution of the identity
t real number ↦ is mapped to Q projection t real number
\(
t\mapsto {Q}_{t}
\)
such that
T operator = equals ∫ integral − ∞ infinity ∞ infinity t real number d Q projection t real number
\(
T= \int _{{-}\infty}^{\infty}{}t\,\mathrm{d}{Q}_{t}
\) .
What remains to be shown is that
G ( B self-adjoint operator ) = equals G ( T operator )
\(
\mathop{\mathcal{G}}\mathopen{}\left( B\right)\mathclose{}= \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}
\) .
Take
( tuple ξ vector , B self-adjoint operator ( ξ vector ) ) tuple ∈ element of G ( B self-adjoint operator )
\(
\mathopen{}\left(ξ, B\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( B\right)\mathclose{}
\) .
Then by Lemma IV.42 we have
( tuple ξ vector , B self-adjoint operator ξ vector ) tuple = equals lim limit τ positive real number → + ∞ infinity
( tuple E bounded linear map τ positive real number ( ξ vector ) , B self-adjoint operator τ positive real number ( ξ vector ) ) tuple
= equals lim limit τ positive real number → + ∞ infinity
( tuple E bounded linear map τ positive real number ( ξ vector ) , F bounded linear map τ positive real number ( ξ vector ) ) tuple
= equals lim limit τ positive real number → + ∞ infinity
( tuple E bounded linear map τ positive real number ( ξ vector ) , T operator ( E bounded linear map τ positive real number ( ξ vector ) ) ) tuple
∈ element of G ( T operator ) ¯ = equals G ( T operator )
.
\[
\mathopen{}\left(ξ, {B}_{ξ}\right)\mathclose{}= \lim_{τ\to{+}\infty}{}
\mathopen{}\left({E}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, {B}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}
= \lim_{τ\to{+}\infty}{}
\mathopen{}\left({E}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, {F}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}
= \lim_{τ\to{+}\infty}{}
\mathopen{}\left({E}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, T\mathopen{}\left( {E}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}
\in \overline{\mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}}= \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}
\text{.}
\]
Hence
G ( B self-adjoint operator ) ⊆ subset G ( T operator )
\(
\mathop{\mathcal{G}}\mathopen{}\left( B\right)\mathclose{}\subseteq \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}
\) .
For the reverse inclusion, suppose
( tuple η vector , T operator ( η vector ) ) tuple ∈ element of G ( T operator ) ⊖ G ( B self-adjoint operator )
\(
\mathopen{}\left(η, T\mathopen{}\left( η\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}\ominus \mathop{\mathcal{G}}\mathopen{}\left( B\right)\mathclose{}
\) .
For
ξ vector ∈ element of H Hilbert space τ positive real number
\(
ξ\in {H}_{τ}
\)
we have
0 zero = equals 〈 η vector , ξ vector 〉 + plus 〈 T operator ( η vector ) , B self-adjoint operator ( ξ vector ) 〉 = equals 〈 η vector , ξ vector 〉 + plus 〈 F bounded linear map τ positive real number ( η vector ) , B self-adjoint operator τ positive real number ( ξ vector ) 〉 = equals 〈 η vector , ( 1 one + plus B self-adjoint operator τ positive real number 2 two ) times ξ vector 〉
.
\[
0= \mathopen{}\left\langle{}η, ξ\right\rangle\mathclose{}+\mathopen{}\left\langle{}T\mathopen{}\left( η\right)\mathclose{}, B\mathopen{}\left( ξ\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}η, ξ\right\rangle\mathclose{}+\mathopen{}\left\langle{}{F}_{τ}\mathopen{}\left( η\right)\mathclose{}, {B}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}η, \mathopen{}\left(1+{{B}_{τ}}^{2}\right)\mathclose{}ξ\right\rangle\mathclose{}
\text{.}
\]
But
B self-adjoint operator τ positive real number
\(
{B}_{τ}
\)
is a bounded self-adjoint operator for which
B self-adjoint operator τ positive real number times H Hilbert space τ positive real number ⊆ subset H Hilbert space τ positive real number
\(
{B}_{τ}{H}_{τ}\subseteq {H}_{τ}
\) ,
whence it follows that the invertible operator
1 one + plus B self-adjoint operator τ positive real number 2 two
\(
1+{{B}_{τ}}^{2}
\)
maps
H Hilbert space τ positive real number
\(
{H}_{τ}
\)
onto itself. Thus η vector \( η \) is orthogonal to the dense subspace
⋃ union τ positive real number
H Hilbert space τ positive real number
\(
\bigcup_{τ}{}
{H}_{τ}
\) ,
which makes
η vector = equals 0 zero
\(
η= 0
\) .
As discussed earlier, we have for T operator \( T \) a reasonably
well-behaved functional calculus for continuous (complex-valued)
functions on R real numbers \( \mathbb{R} \) which yields a densely defined
operator
f continuous function ( T operator )
\(
f\mathopen{}\left( T\right)\mathclose{}
\)
with
D domain ( ( f continuous function ( T operator ) ) * ) = equals D domain ( f continuous function ¯ complex conjugate ( T operator ) )
\(
\mathop{\mathcal{D}}\mathopen{}\left( \mathopen{}\left(f\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}^{*}\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( \overline{f}\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}
\)
for every such function f continuous function \( f \) . Explicitly, in the ambient notation,
f continuous function ( T operator ) = equals ∫ integral − ∞ infinity ∞ infinity f continuous function ( t real number ) d Q projection t real number
,
\[
f\mathopen{}\left( T\right)\mathclose{}= \int _{{-}\infty}^{\infty}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}{Q}_{t}
\text{,}
\]
which means
f continuous function ( T operator ) times ξ vector = equals lim limit τ positive real number → + ∞ infinity
f continuous function ( T operator ) τ positive real number times ξ vector
\(
f\mathopen{}\left( T\right)\mathclose{}ξ= \lim_{τ\to{+}\infty}{}
{f\mathopen{}\left( T\right)\mathclose{}}_{τ}ξ
\)
for
ξ vector ∈ element of D domain ( f continuous function ( T operator ) )
\(
ξ\in \mathop{\mathcal{D}}\mathopen{}\left( f\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}
\) ,
which is the set of all vectors for which the limit exists, where
f continuous function ( T operator ) τ positive real number = equals ∫ integral − τ positive real number τ positive real number f continuous function ( t real number ) d Q projection t real number
\(
{f\mathopen{}\left( T\right)\mathclose{}}_{τ}= \int _{{-}τ}^{τ}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}{Q}_{t}
\) .
Arithmetic with functions works as is should provided one restricts to the dense subspace
⋃ union τ positive real number H Hilbert space τ positive real number
\(
\bigcup_{τ}{}{H}_{τ}
\) ,
which is contained in the domain of every continuous function of T operator \( T \) . Ambiguities vanish when f continuous function \( f \) is bounded, which as we have seen makes
f continuous function ( T operator )
\(
f\mathopen{}\left( T\right)\mathclose{}
\)
bounded, with norm at most
sup supremum t real number ∈ element of R real numbers | modulus f continuous function ( t real number ) | modulus
\(
\sup_{t\in \mathbb{R}}{}\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}
\) .
For bounded functions, we have
( f continuous function ( g continuous function ) ) ( T operator ) = equals f continuous function ( T operator ) times g continuous function ( T operator )
\(
\mathopen{}\left(f\mathopen{}\left( g\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( T\right)\mathclose{}= f\mathopen{}\left( T\right)\mathclose{}g\mathopen{}\left( T\right)\mathclose{}
\) ,
( f continuous function + plus g continuous function ) ( T operator ) = equals f continuous function ( T operator ) + plus g continuous function ( T operator )
\(
\mathopen{}\left(f+g\right)\mathclose{}\mathopen{}\left( T\right)\mathclose{}= f\mathopen{}\left( T\right)\mathclose{}+g\mathopen{}\left( T\right)\mathclose{}
\)
and
f continuous function ¯ complex conjugate ( T operator ) = equals f continuous function ( T operator ) *
\(
\overline{f}\mathopen{}\left( T\right)\mathclose{}= f\mathopen{}\left( T\right)\mathclose{}^{*}
\) .
In particular, we can form the bounded operator
e Euler's constant i imaginary unit times T operator
\(
{\mathrm{e}}^{\mathrm{i}T}
\) ,
defined as
exp exponential ( i imaginary unit times T operator )
\(
\exp\mathopen{}\left( \mathrm{i}T\right)\mathclose{}
\) .
Its adjoint
e Euler's constant − i imaginary unit T operator
\(
{\mathrm{e}}^{{-}\mathrm{i}T}
\)
is also its inverse, that is,
e Euler's constant i imaginary unit times T operator
\(
{\mathrm{e}}^{\mathrm{i}T}
\)
is unitary. Parlay this into a unitary representation
t real number ↦ is mapped to U unitary operator t real number
\(
t\mapsto {U}_{t}
\)
of R real numbers \( \mathbb{R} \) on T operator \( T \) by setting
U unitary operator t real number = equals e Euler's constant − i imaginary unit t real number T operator
\(
{U}_{t}= {\mathrm{e}}^{{-}\mathrm{i}tT}
\)
for real t real number \( t \) . These unitary operators obey
U unitary operator − t real number = equals U unitary operator t real number *
\(
{U}_{{-}t}= {U}_{t}^{*}
\)
and
U unitary operator s real number + plus t real number = equals U unitary operator s real number times U unitary operator t real number
\(
{U}_{s+t}= {U}_{s}{U}_{t}
\) .
It is not hard to check that the representation is strongly continuous in the sense that
lim limit t real number → 0 zero U unitary operator t real number times ξ vector = equals ξ vector
\(
\lim_{t\to0}{}{U}_{t}ξ= ξ
\)
for all
ξ vector ∈ element of T operator
\(
ξ\in T
\) .
A famous theorem of M. Stone asserts that every strongly continuous unitary
representation of R real numbers \( \mathbb{R} \) on T operator \( T \) arises in this way.
We conclude with a look at how these notions play out in quantum mechanics. In the classical framework, the states of a mechanical system with d metric \( d \) degrees of freedom are vectors in
R real numbers d metric
\(
{\mathbb{R}}^{d}
\) .
To keep track of a quantum mechanical system, we must move to the Hilbert space
H Hilbert space = equals L 2 Lebesgue space ( R real numbers d metric )
\(
H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( {\mathbb{R}}^{d}\right)\mathclose{}
\) .
The state of the system is described by
a unit vector ψ unit vector \( ψ \) in H Hilbert space \( H \) , which imposes the probability density
| modulus ψ unit vector | modulus 2 two
\(
{\mathopen{}\left\lvert{}ψ\right\rvert\mathclose{}}^{2}
\)
on
R real numbers d metric
\(
{\mathbb{R}}^{d}
\) .
The observables of the system (things that we can imagine measuring in a way that yields a real number at each observation, but in a random way governed by
| modulus ψ unit vector | modulus 2 two
\(
{\mathopen{}\left\lvert{}ψ\right\rvert\mathclose{}}^{2}
\) )
are bounded self-adjoint operators on H Hilbert space \( H \) . For an observable A self-adjoint operator \( A \) ,
the expected value of A self-adjoint operator \( A \) when the system is in the state ψ unit vector \( ψ \) is
〈 A self-adjoint operator ( ψ unit vector ) , ψ unit vector 〉
\(
\mathopen{}\left\langle{}A\mathopen{}\left( ψ\right)\mathclose{}, ψ\right\rangle\mathclose{}
\) .
Evolution of the system over time is determined by a self-adjoint operator B self-adjoint operator \( B \) called the Hamiltonian, which is unbounded in almost all cases of interest. The way B self-adjoint operator \( B \) moves the system is by the unitary representation
U unitary operator t real number = equals e Euler's constant − i imaginary unit t real number B self-adjoint operator
\(
{U}_{t}= {\mathrm{e}}^{{-}\mathrm{i}tB}
\) .
From one point of view, the state ψ unit vector \( ψ \) remains fixed,
while the observable A self-adjoint operator \( A \) at time 0 zero \( 0 \) becomes
U unitary operator t real number * times A self-adjoint operator times U unitary operator t real number
\(
{U}_{t}
^{*}A{U}_{t}
\)
at time t real number \( t \) . The expected value of A self-adjoint operator \( A \) at time t real number \( t \) in the state ψ unit vector \( ψ \) is then
〈 U unitary operator t real number * times A self-adjoint operator times U unitary operator t real number times ξ vector , ξ vector 〉
\(
\mathopen{}\left\langle{}
{U}_{t}
^{*}A{U}_{t}ξ, ξ\right\rangle\mathclose{}
\) .
This is of course the same as
〈 A self-adjoint operator times U unitary operator t real number times ξ vector , U unitary operator t real number times ξ vector 〉
\(
\mathopen{}\left\langle{}A{U}_{t}ξ, {U}_{t}ξ\right\rangle\mathclose{}
\) ,
so in terms of what can usefully be measured in the laboratory, we can equally well regard A self-adjoint operator \( A \) as fixed and the state moving from
ψ unit vector 0 zero
\(
{ψ}_{0}
\)
at time 0 zero \( 0 \) to
ψ unit vector t real number = equals U unitary operator t real number times ψ unit vector 0 zero
\(
{ψ}_{t}= {U}_{t}{ψ}_{0}
\)
at time t real number \( t \) . This means
ψ unit vector = equals ψ unit vector ( x vector t real number ) = equals ψ unit vector t real number ( x vector ) = equals exp exponential ( − i imaginary unit times t real number times T operator ) times ψ unit vector 0 zero
\(
ψ= ψ\mathopen{}\left( \mathbf{x}, t\right)\mathclose{}= {ψ}_{t}\mathopen{}\left( \mathbf{x}\right)\mathclose{}= \exp\mathopen{}\left( {-}\mathrm{i}tT\right)\mathclose{}{ψ}_{0}
\) ,
so
∂ ∂ t real number partial derivative with respect to t ( ψ unit vector ( x vector t real number ) ) = equals − i imaginary unit times B self-adjoint operator times exp exponential ( − i imaginary unit times t real number times B self-adjoint operator ) times ψ unit vector 0 zero = equals − i imaginary unit times B self-adjoint operator times ψ unit vector ( x vector t real number )
\(
\frac{\partial }{\partial t}\mathopen{}\left( ψ\mathopen{}\left( \mathbf{x}, t\right)\mathclose{}\right)\mathclose{}= {-}\mathrm{i}B\exp\mathopen{}\left( {-}\mathrm{i}tB\right)\mathclose{}{ψ}_{0}= {-}\mathrm{i}Bψ\mathopen{}\left( \mathbf{x}, t\right)\mathclose{}
\) .
This is Schrödinger's equation:
i imaginary unit times ∂ ψ unit vector ∂ t real number partial derivative of ψ with respect to t = equals B self-adjoint operator times ψ unit vector
\(
\mathrm{i}\frac{\partial ψ}{\partial t}= Bψ
\) .
To go beyond mere epistemology, one has to grab hold of physically meaningful Hamiltonians—which would, as they say, take us beyond the scope of this course.