Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

A. Unbounded Operators

A linear operator Llinear operator\( L \) in HHilbert space\( H \) (as distinct from on HHilbert space\( H \)) has domain Ddomain of operatorsubsetHHilbert space \( D\subseteq H \) and range in HHilbert space\( H \). Write (tupleLlinear operator, Ddomain of operator)tuple \( \mathopen{}\left(L, D\right)\mathclose{} \) for Llinear operator:mapsDdomain of operatortoHHilbert space \( L : D \to H \). Say that (tupleLlinear operator1one, Ddomain of operator1one)tuple \( \mathopen{}\left({L}_{1}, {D}_{1}\right)\mathclose{} \) is an extension of (tupleLlinear operator, Ddomain of operator)tuple \( \mathopen{}\left(L, D\right)\mathclose{} \) if Ddomain of operatorsubsetDdomain of operator1one \( D\subseteq {D}_{1} \) and Llinear operator1one|restricted toDdomain of operator=equalsLlinear operator \( {L}_{1}|D= L \).

The graph of Llinear operator\( L \) is G(Llinear operator)=equalsG((tupleLlinear operator, Ddomain of operator)tuple)=equals{set(tuplexvector, Llinear operator(xvector))tuple|such thatxvectorelement ofDdomain of operator}setsubsetHHilbert spaceHHilbert space \( \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{G}}\mathopen{}\left( \mathopen{}\left(L, D\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\,\middle\vert\, x\in D\,\right\}\mathclose{}\subseteq H\oplus H \). If Ddomain of operator\( D \) is closed, then Llinear operator\( L \) is bounded if and only if its graph is closed in HHilbert spaceHHilbert space \( H\oplus H \) (Closed Graph Theorem). It is easy to give examples of unbounded Llinear operator\( L \) on non-closed Ddomain of operator\( D \) with closed graph.

Example IV.13

Take Soperatorelement ofbounded linear operators(HHilbert space) \( S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \) with Kerkernel(Soperator)=equals{set0zero}set \( \operatorname{Ker}\mathopen{}\left( S\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \) but Soperator\( S \) not invertible. Let Ddomain of operator=equalsSoperator(HHilbert space) \( D= S\mathopen{}\left( H\right)\mathclose{} \). Define Llinear operator:mapsDdomain of operatortoHHilbert space \( L : D \to H \) by Llinear operator(Soperator(yvector))=equalsyvector \( L\mathopen{}\left( S\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}= y \) (which is possible because Soperator\( S \) is injective). Then G((tupleLlinear operator, Ddomain of operator)tuple)=equals{set(tuplexvector, Llinear operator(xvector))tuple|such thatxvectorelement ofDdomain of operator}set=equals{set(tupleSoperator(yvector), Llinear operator(Soperator(yvector)))tuple|such thatyvectorelement ofHHilbert space}set=equals{set(tupleSoperator(yvector), yvector)tuple|such thatyvectorelement ofHHilbert space}set \( \mathop{\mathcal{G}}\mathopen{}\left( \mathopen{}\left(L, D\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\,\middle\vert\, x\in D\,\right\}\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(S\mathopen{}\left( y\right)\mathclose{}, L\mathopen{}\left( S\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}\,\middle\vert\, y\in H\,\right\}\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(S\mathopen{}\left( y\right)\mathclose{}, y\right)\mathclose{}\,\middle\vert\, y\in H\,\right\}\mathclose{} \), which is closed because it is the image of the graph of Soperator\( S \) (which is closed) under switching the entries.

Definition IV.14

A linear operator Llinear operator:mapsDdomain of operatortoHHilbert space \( L : D \to H \) is closed if its graph is closed in HHilbert spaceHHilbert space \( H\oplus H \).

Example IV.15

Let HHilbert space=equalsl2(Zintegers+positive elements) \( H= \mathrm{l}^{0}\mathopen{}\left( {\mathbb{Z}}^{+}\right)\mathclose{} \) (as functions on Zintegers+positive elements \( {\mathbb{Z}}^{+} \)). Let αfunction:mapsZintegers+positive elementstoCcomplex numbers \( α : {\mathbb{Z}}^{+} \to \mathbb{C} \) be any function. Let Ddomain of operator=equals{setffunctionelement ofl2|such that αfunction(ffunction)element ofl2 }set \( D= \mathopen{}\left\{\, f\in \mathrm{l}^{0}\,\middle\vert\, , α\mathopen{}\left( f\right)\mathclose{}\in \mathrm{l}^{0}, \,\right\}\mathclose{} \), Llinear operator(ffunction)=equalsαfunction(ffunction) \( L\mathopen{}\left( f\right)\mathclose{}= α\mathopen{}\left( f\right)\mathclose{} \). To see Llinear operator\( L \) is closed, suppose (tupleffunctionninteger, Llinear operator(ffunctionninteger))tupleconverges to(tupleffunction, gfunction)tuple \( \mathopen{}\left({f}_{n}, L\mathopen{}\left( {f}_{n}\right)\mathclose{}\right)\mathclose{} \to \mathopen{}\left(f, g\right)\mathclose{} \), ffunctionnintegerelement ofDdomain of operator \( {f}_{n}\in D \). Then ffunctionnintegerconverges toffunction \( {f}_{n} \to f \), αfunction(ffunctionninteger)converges togfunction \( α\mathopen{}\left( {f}_{n}\right)\mathclose{} \to g \) in l2\( \mathrm{l}^{0} \). In particular, ffunctionninteger(jinteger)converges toffunction(jinteger) \( {f}_{n}\mathopen{}\left( j\right)\mathclose{} \to f\mathopen{}\left( j\right)\mathclose{} \) for all jintegerelement ofZintegers+positive elements \( j\in {\mathbb{Z}}^{+} \), and, using Fatou, summationjinteger |modulusgfunction(jinteger)-minusαfunction(jinteger)timesffunction(jinteger)|modulus 2two =equalssummationjinteger limlimitninteger |modulusgfunction(jinteger)-minusαfunction(jinteger)timesffunctionninteger(jinteger)|modulus 2two less than or equal tolim inflimit infimumninteger |modulusgfunction(jinteger)-minusαfunction(jinteger)timesffunctionninteger(jinteger)|modulus 2two =equalslim inflimit infimumninteger gfunction-minusαfunction(ffunctionninteger) 2two =equals0zero . \[ \sum_{j}{} {\mathopen{}\left\lvert{}g\mathopen{}\left( j\right)\mathclose{}-α\mathopen{}\left( j\right)\mathclose{}f\mathopen{}\left( j\right)\mathclose{}\right\rvert\mathclose{}}^{2} = \sum_{j}{} \lim_{n}{} {\mathopen{}\left\lvert{}g\mathopen{}\left( j\right)\mathclose{}-α\mathopen{}\left( j\right)\mathclose{}{f}_{n}\mathopen{}\left( j\right)\mathclose{}\right\rvert\mathclose{}}^{2} \leq \liminf_{n}{} {\mathopen{}\left\lvert{}g\mathopen{}\left( j\right)\mathclose{}-α\mathopen{}\left( j\right)\mathclose{}{f}_{n}\mathopen{}\left( j\right)\mathclose{}\right\rvert\mathclose{}}^{2} = \liminf_{n}{} {\mathopen{}\left\lVert{}g-α\mathopen{}\left( {f}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} = 0 \text{.} \] So, αfunction(ffunction)=equalsgfunctionelement ofl2 \( α\mathopen{}\left( f\right)\mathclose{}= g\in \mathrm{l}^{0} \), ffunctionelement ofDdomain of operator \( f\in D \), and (tupleffunction, gfunction)tuple=equals(tupleffunction, Llinear operator(ffunction))tupleelement ofGgroup(Llinear operator) \( \mathopen{}\left(f, g\right)\mathclose{}= \mathopen{}\left(f, L\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\in G\mathopen{}\left( L\right)\mathclose{} \).

Definition IV.16

A linear operator Llinear operator:mapsDdomain of operatortoHHilbert space \( L : D \to H \) is closable (or pre-closed) if the closure of the graph (in HHilbert spaceHHilbert space \( H\oplus H \)) is the graph of a linear operator.

That is,

  1. For all xvectorelement ofHHilbert space \( x\in H \), #cardinality (({setxvector}setHHilbert space)intersectionG(Llinear operator)¯) less than or equal to1one \( {\#} \mathopen{}\left(\mathopen{}\left(\mathopen{}\left\{\, x\,\right\}\mathclose{}\oplus H\right)\mathclose{}\cap \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}}\right)\mathclose{} \leq 1 \).
  2. If (tuplexvector, yvector1one)tuple \( \mathopen{}\left(x, {y}_{1}\right)\mathclose{} \) and (tuplexvector, yvector2two)tuple \( \mathopen{}\left(x, {y}_{2}\right)\mathclose{} \) are in G(Llinear operator)¯ \( \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}} \) then yvector1one=equalsyvector2two \( {y}_{1}= {y}_{2} \).
  3. (tuple0zero, yvector)tupleelement ofG(Llinear operator)¯ \( \mathopen{}\left(0, y\right)\mathclose{}\in \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}} \) implies yvector=equals0zero \( y= 0 \).
  4. xvectornintegerconverges to0zero \( {x}_{n} \to 0 \) in Ddomain of operator\( D \) and Llinear operator(xvectorninteger)converges toyvector \( L\mathopen{}\left( {x}_{n}\right)\mathclose{} \to y \) implies yvector=equals0zero \( y= 0 \).

Notation IV.17

For (tupleLlinear operator, Ddomain of operator)tuple \( \mathopen{}\left(L, D\right)\mathclose{} \) closable, write Llinear operator¯norm closure \( \overline{L} \) for the linear operator with G(Llinear operator¯)=equalsG(Llinear operator)¯ \( \mathop{\mathcal{G}}\mathopen{}\left( \overline{L}\right)\mathclose{}= \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}} \). Llinear operator¯ \( \overline{L} \) is called the closure of Llinear operator\( L \).

Example IV.18

HHilbert space=equalsL2Lebesgue space(Rreal numbers) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{} \). Ddomain of operator=equals{setffunctionelement ofL2Lebesgue space(Rreal numbers)intersectionC1space of continuously differentiable functions(Rreal numbers)|such that ffunctionelement ofL2Lebesgue space(Rreal numbers) }set \( D= \mathopen{}\left\{\, f\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{}\cap \mathrm{C}^{1}\mathopen{}\left( \mathbb{R}\right)\mathclose{}\,\middle\vert\, , f'\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathbb{R}\right)\mathclose{}, \,\right\}\mathclose{} \). Suppose (sequenceffunctionninteger)sequence \( \mathopen{}\left({f}_{n}\right)\mathclose{} \) is a sequence in Ddomain of operator\( D \) with ffunctionnintegerconverges to0zero \( {f}_{n} \to 0 \) and ffunctionnintegerconverges togfunction \( {f}_{n}' \to g \) (in L2Lebesgue space\( \mathrm{L}^{\mathrm{2}} \)) for some gfunctionelement ofL2Lebesgue space \( g\in \mathrm{L}^{\mathrm{2}} \). Fix areal number<less thanbreal number \( a\lt b \). Define Gfunction\( G \) on [intervalareal number, breal number]interval \( \mathopen{}\left[a, b\right]\mathclose{} \) by Gfunction(xvector)=equalsintegralareal numberxvectorgfunction \( G\mathopen{}\left( x\right)\mathclose{}= \int _{a}^{x}{}g \). Then ffunctionninteger|restricted to[intervalareal number, breal number]intervalconverges togfunction|restricted to[intervalareal number, breal number]interval \( {f}_{n}'|\mathopen{}\left[a, b\right]\mathclose{} \to g|\mathopen{}\left[a, b\right]\mathclose{} \), because ffunctionninteger|restricted to[intervalareal number, breal number]interval-minusffunctionninteger(areal number)times1identity functionconverges toGfunction \( {f}_{n}|\mathopen{}\left[a, b\right]\mathclose{}-{f}_{n}\mathopen{}\left( a\right)\mathclose{}\mathbf{1} \to G \) in L2Lebesgue space([intervalareal number, breal number]interval) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[a, b\right]\mathclose{}\right)\mathclose{} \). But, ffunctionninteger|restricted to[intervalareal number, breal number]intervalconverges to0zero \( {f}_{n}|\mathopen{}\left[a, b\right]\mathclose{} \to 0 \), so Gfunction\( G \) is the L2Lebesgue space \( \mathrm{L}^{\mathrm{2}} \) limit of constant functions, and must therefore be constant. But, Gfunction(areal number)=equals0zero \( G\mathopen{}\left( a\right)\mathclose{}= 0 \), so Gfunctionequivalent0zero \( G\equiv 0 \) almost everywhere on [intervalareal number, breal number]interval \( \mathopen{}\left[a, b\right]\mathclose{} \), and hence on Rreal numbers\( \mathbb{R} \).

Thus Llinear operator\( L \) is pre-closed. To see that it is not closed, consider the functions (see figures Figure IV.A and Figure IV.B) φfunction(xvector)=equals{cases0zero, |modulusxvector|modulusless than or equal to1one ; 1one-minus|modulusxvector|modulus, |modulusxvector|modulus<less than1one. } \[ φ\mathopen{}\left( x\right)\mathclose{}= \begin{cases}0, & \mathopen{}\left\lvert{}x\right\rvert\mathclose{}\leq 1 ; \\ 1-\mathopen{}\left\lvert{}x\right\rvert\mathclose{}, & \mathopen{}\left\lvert{}x\right\rvert\mathclose{}\lt 1\text{.} \end{cases} \] ψunit vector(xvector)=equals{cases0zero, |modulusxvector|modulusgreater than or equal to1one ; sgnsign(xvector) , |modulusxvector|modulus<less than1one } \[ ψ\mathopen{}\left( x\right)\mathclose{}= \begin{cases}0, & \mathopen{}\left\lvert{}x\right\rvert\mathclose{}\geq 1 ; \\ {-} \mathop{\text{sgn}}\mathopen{}\left( x\right)\mathclose{} , & \mathopen{}\left\lvert{}x\right\rvert\mathclose{}\lt 1 \end{cases} \] Then (tupleφfunction, ψunit vector)tupleelement ofGfunction(Llinear operator)¯set differenceGfunction(Llinear operator) \( \mathopen{}\left(φ, ψ\right)\mathclose{}\in \overline{G\mathopen{}\left( L\right)\mathclose{}}\setminus G\mathopen{}\left( L\right)\mathclose{} \).

xvector\( x \) yvector\( y \) 1one\( {-}1 \) 1one\( 1 \) 1one\( 1 \)
Figure IV.A. φfunction(xvector) \( φ\mathopen{}\left( x\right)\mathclose{} \)
xvector\( x \) yvector\( y \) 1one\( {-}1 \) 1one\( 1 \) 1one\( 1 \)
Figure IV.B. ψunit vector(xvector) \( ψ\mathopen{}\left( x\right)\mathclose{} \)
Definition IV.19

For any densely defined operator Llinear operator:mapsDdomain of operatortoHHilbert space \( L : D \to H \) (i.e. Ddomain of operator¯=equalsHHilbert space \( \overline{D}= H \)), define Ddomain of operator* \( D^{*} \) to be the set of yvectorelement ofHHilbert space\( y\in H \) such that there exists ŷvector\( ŷ \) such that Llinear operator(xvector), yvector=equalsxvector, ŷvector \( \mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, ŷ\right\rangle\mathclose{} \) for all xvectorelement ofDdomain of operator\( x\in D \). Because Ddomain of operator\( D \) is dense, ŷvector \( ŷ \) is unique, and we get an operator Llinear operator*:mapsDdomain of operator*toHHilbert space \( L^{*} : D^{*} \to H \) defined by Llinear operator*(yvector)=equalsŷvector \( L^{*}\mathopen{}\left( y\right)\mathclose{}= ŷ \), the adjoint of Llinear operator\( L \), with Llinear operator(xvector), yvector=equalsxvector, Llinear operator*(yvector) \( \mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, L^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{} \) for all xvectorelement ofDdomain of operator \( x\in D \) and yvectorelement ofDdomain of operator* \( y\in D^{*} \).

Proposition IV.20

For any densely defined Llinear operator\( L \), the operator Llinear operator* \( L^{*} \) is closed.

Proof. Suppose (tupleyvectorninteger, Llinear operator*(yvectorninteger))tupleconverges to(tupleyvector, wvector)tuple \( \mathopen{}\left({y}_{n}, L^{*}\mathopen{}\left( {y}_{n}\right)\mathclose{}\right)\mathclose{} \to \mathopen{}\left(y, w\right)\mathclose{} \) in HHilbert spaceHHilbert space \( H\oplus H \) for a sequence (sequenceyvectorninteger)sequenceelement ofDdomain of operator* \( \mathopen{}\left({y}_{n}\right)\mathclose{}\in D^{*} \). Then for all xvectorelement ofDdomain of operator \( x\in D \), Llinear operator(xvector), yvectornintegerconverges toLlinear operator(xvector), yvector \( \mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, {y}_{n}\right\rangle\mathclose{} \to \mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{} \) and Llinear operator(xvector), yvectorninteger=equalsxvector, Llinear operator*(yvectorninteger)converges toxvector, wvector \( \mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, {y}_{n}\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, L^{*}\mathopen{}\left( {y}_{n}\right)\mathclose{}\right\rangle\mathclose{} \to \mathopen{}\left\langle{}x, w\right\rangle\mathclose{} \). Thus Llinear operator(xvector), yvector=equalsxvector, wvector \( \mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, w\right\rangle\mathclose{} \), making yvectorelement ofDdomain of operator* \( y\in D^{*} \), wvector=equalsLlinear operator*(yvector) \( w= L^{*}\mathopen{}\left( y\right)\mathclose{} \), and (tupleyvector, wvector)tupleelement ofG(Llinear operator*) \( \mathopen{}\left(y, w\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( L^{*}\right)\mathclose{} \).

Example IV.21

HHilbert space=equalsL2Lebesgue space([interval0zero, 1one]interval) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \). Define Ddomain of operator=equalsC1space of continuously differentiable functions([interval0zero, 1one]interval) \( D= \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \). Consider Llinear operator:mapsDdomain of operatortoHHilbert space \( L : D \to H \) defined by Llinear operator(fcontinuous function)=equalsfcontinuous function \( L\mathopen{}\left( f\right)\mathclose{}= f' \). Then Ddomain of operator*intersectionC1space of continuously differentiable functions([interval0zero, 1one]interval)=equals{setgcontinuous functionelement ofC1space of continuously differentiable functions([interval0zero, 1one]interval)|such that gcontinuous function(0zero)=equals0zero=equalsgcontinuous function(1one) }set \( D^{*}\cap \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}= \mathopen{}\left\{\, g\in \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{}\,\middle\vert\, , g\mathopen{}\left( 0\right)\mathclose{}= 0= g\mathopen{}\left( 1\right)\mathclose{}, \,\right\}\mathclose{} \). For fcontinuous function\( f \) and gcontinuous function\( g \) in C1space of continuously differentiable functions([interval0zero, 1one]interval) \( \mathrm{C}^{1}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), integral0zero1one fcontinuous functiontimesgcontinuous function¯complex conjugate =equals(evaluation fcontinuous functiontimesgcontinuous function¯complex conjugate |evaluation0zero1one-minusintegral0zero1one fcontinuous functiontimesgcontinuous function¯complex conjugate \( \int _{0}^{1}{} f'\overline{g} = \mathopen{}\left( f\overline{g} \right|\mathclose{}_{0}^{1}-\int _{0}^{1}{} f \overline{g}' \) using integration by parts. If we change the domain by defining Ddomain of operator=equals{setfcontinuous functionelement ofC1space of continuously differentiable functions|such that fcontinuous function(0zero)=equals0zero }set \( D= \mathopen{}\left\{\, f\in \mathrm{C}^{1}\,\middle\vert\, , f\mathopen{}\left( 0\right)\mathclose{}= 0, \,\right\}\mathclose{} \), Llinear operator(fcontinuous function)=equalsfcontinuous function \( L\mathopen{}\left( f\right)\mathclose{}= f' \) makes Ddomain of operator*intersectionC1space of continuously differentiable functions=equals{setgcontinuous functionelement ofC1space of continuously differentiable functions|such that gcontinuous function(1one)=equals0zero }set \( D^{*}\cap \mathrm{C}^{1}= \mathopen{}\left\{\, g\in \mathrm{C}^{1}\,\middle\vert\, , g\mathopen{}\left( 1\right)\mathclose{}= 0, \,\right\}\mathclose{} \). In either case Llinear operator*|restricted to(Ddomain of operator*intersectionC1space of continuously differentiable functions)=equals ddxvectorderivative with respect to x \( L^{*}|\mathopen{}\left( D^{*}\cap \mathrm{C}^{1}\right)\mathclose{}= {-} \frac{\mathrm{d}}{\mathrm{d}x} \).

In what follows, let Llinear operator\( L \) be a linear operator on HHilbert space\( H \) with a dense domain Ddomain of operator=equalsDdomain(Llinear operator) \( D= \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \).

Proposition IV.22

For densely defined closable Llinear operator\( L \), we have Llinear operator¯*=equalsLlinear operator* \( \overline{L}^{*}= L^{*} \).

Proof. Clearly, Ddomain(Llinear operator¯*)subsetDdomain(Llinear operator*) \( \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \) (in general the domain of the adjoint of the extension will be a subset of the domain of the adjoint of the original). Take yvectorelement ofLlinear operator* \( y\in L^{*} \). For xvectorelement ofDdomain(Llinear operator¯) \( x\in \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}\right)\mathclose{} \), (tuplexvector, Llinear operator¯(xvector))tupleelement ofG(Llinear operator¯)=equalsG(Llinear operator)¯ \( \mathopen{}\left(x, \overline{L}\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( \overline{L}\right)\mathclose{}= \overline{\mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}} \). We get (sequencexvectorninteger)sequence \( \mathopen{}\left({x}_{n}\right)\mathclose{} \) in Ddomain(Llinear operator) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \) with xvectornintegerconverges toxvector \( {x}_{n} \to x \) and Llinear operator(xvectorninteger)converges toLlinear operator¯(xvector) \( L\mathopen{}\left( {x}_{n}\right)\mathclose{} \to \overline{L}\mathopen{}\left( x\right)\mathclose{} \). Then Llinear operator¯(xvector), yvector=equalslimlimitninteger Llinear operator(xvectorninteger), yvector =equalslimlimitninteger xvectorninteger, Llinear operator*(yvector) =equalsxvector, Llinear operator*(yvector) . \[ \mathopen{}\left\langle{}\overline{L}\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= \lim_{n}{} \mathopen{}\left\langle{}L\mathopen{}\left( {x}_{n}\right)\mathclose{}, y\right\rangle\mathclose{} = \lim_{n}{} \mathopen{}\left\langle{}{x}_{n}, L^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{} = \mathopen{}\left\langle{}x, L^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{} \text{.} \] Thus yvectorelement ofDdomain(Llinear operator¯*) \( y\in \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{} \) and Llinear operator¯*(yvector)=equalsLlinear operator*(yvector) \( \overline{L}^{*}\mathopen{}\left( y\right)\mathclose{}= L^{*}\mathopen{}\left( y\right)\mathclose{} \).

Remark IV.23

Suppose Llinear operator\( L \) is closed and densely defined. Then G(Llinear operator) \( \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{} \) is a Hilbert space, and we have the bounded linear map Ebounded linear operator:mapsG(Llinear operator)toHHilbert space \( E : \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{} \to H \) defined by Ebounded linear operator((tuplexvector, Llinear operator(xvector))tuple)=equalsxvector \( E\mathopen{}\left( \mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= x \). Note Ebounded linear operatorless than or equal to1one \( \mathopen{}\left\lVert{}E\right\rVert\mathclose{}\leq 1 \). So, we get (bounded) Ebounded linear operator*:mapsHHilbert spacetoG(Llinear operator) \( E^{*} : H \to \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{} \).

Proposition IV.24

With Llinear operator\( L \) and Ebounded linear operator\( E \) as above,

  1. Kerkernel(Ebounded linear operator)=equals{set0zero}set \( \operatorname{Ker}\mathopen{}\left( E\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \), so Ebounded linear operator*\( E^{*} \) has dense range in G(Llinear operator) \( \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{} \).
  2. If wvectorelement ofHHilbert space \( w\in H \) and yvector=equalsEbounded linear operator(Ebounded linear operator*(wvector)) \( y= E\mathopen{}\left( E^{*}\mathopen{}\left( w\right)\mathclose{}\right)\mathclose{} \) (so that yvectorelement ofDdomain(Llinear operator) \( y\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \) and Ebounded linear operator*(wvector)=equals(tupleyvector, Llinear operator(yvector))tuple \( E^{*}\mathopen{}\left( w\right)\mathclose{}= \mathopen{}\left(y, L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{} \)), then Llinear operator(yvector)element ofDdomain(Llinear operator*) \( L\mathopen{}\left( y\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \) and yvector+plusLlinear operator*(Llinear operator(yvector))=equalswvector \( y+ L^{*}\mathopen{}\left( L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}= w \).
  3. Ranrange(Llinear operator)equivalentLlinear operator(Ddomain(Llinear operator))subset Ddomain(Llinear operator*) ¯ \( \operatorname{Ran}\mathopen{}\left( L\right)\mathclose{}\equiv L\mathopen{}\left( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}\right)\mathclose{}\subseteq \overline{ \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} } \).

Proof.

  1. Kerkernel(Ebounded linear operator)=equals0zero \( \operatorname{Ker}\mathopen{}\left( E\right)\mathclose{}= 0 \) is clear. Ranrange(Ebounded linear operator*)¯=equals (Kerkernel(Ebounded linear operator)) =equalsG(Llinear operator) \( \overline{\operatorname{Ran}\mathopen{}\left( E^{*}\right)\mathclose{}}= { \mathopen{}\left(\operatorname{Ker}\mathopen{}\left( E\right)\mathclose{}\right)\mathclose{} }^{\perp}= \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{} \).
  2. Take xvectorelement ofDdomain(Llinear operator) \( x\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \). Then xvector, yvector+plusLlinear operator(xvector), Llinear operator(yvector)=equals(tuplexvector, Llinear operator(xvector))tuple, (tupleyvector, Llinear operator(yvector))tuple=equals(tuplexvector, Llinear operator(xvector))tuple, Ebounded linear operator*(wvector)=equalsEbounded linear operator((tuplexvector, Llinear operator(xvector))tuple), wvector=equalsxvector, wvector . \[ \mathopen{}\left\langle{}x, y\right\rangle\mathclose{}+\mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, L\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}, \mathopen{}\left(y, L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}, E^{*}\mathopen{}\left( w\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}E\mathopen{}\left( \mathopen{}\left(x, L\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}, w\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, w\right\rangle\mathclose{} \text{.} \] Thus Llinear operator(xvector), Llinear operator(yvector)=equalsxvector, wvector-minusyvector \( \mathopen{}\left\langle{}L\mathopen{}\left( x\right)\mathclose{}, L\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}x, w-y\right\rangle\mathclose{} \) and Llinear operator*(Llinear operator(yvector))=equalswvector-minusyvector \( L^{*}\mathopen{}\left( L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}= w-y \).
  3. Take yvectorelement ofDdomain(Llinear operator) \( y\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \). Then (tupleyvector, Llinear operator(yvector))tupleelement ofG(Llinear operator)=equalsEbounded linear operator*(HHilbert space)¯ \( \mathopen{}\left(y, L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( L\right)\mathclose{}= \overline{ E^{*}\mathopen{}\left( H\right)\mathclose{}} \). So get a sequence (sequence (tupleyvectorninteger, Llinear operator(yvectorninteger))tuple )sequenceelement ofEbounded linear operator*(HHilbert space) \( \mathopen{}\left( \mathopen{}\left({y}_{n}, L\mathopen{}\left( {y}_{n}\right)\mathclose{}\right)\mathclose{} \right)\mathclose{}\in E^{*}\mathopen{}\left( H\right)\mathclose{} \) such that (tupleyvectorninteger, Llinear operator(yvectorninteger))tupleconverges to(tupleyvector, Llinear operator(yvector))tuple \( \mathopen{}\left({y}_{n}, L\mathopen{}\left( {y}_{n}\right)\mathclose{}\right)\mathclose{} \to \mathopen{}\left(y, L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{} \). Each yvectornintegerelement ofEbounded linear operator(Ebounded linear operator*(HHilbert space))subsetDdomain(Llinear operator) \( {y}_{n}\in E\mathopen{}\left( E^{*}\mathopen{}\left( H\right)\mathclose{}\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \), and, by the second part, Llinear operator(yvectorninteger)element ofDdomain(Llinear operator*) \( L\mathopen{}\left( {y}_{n}\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \) and Llinear operator(yvector)=equalslimlimitninteger Llinear operator(yvectorninteger) element ofDdomain(Llinear operator*)¯ \( L\mathopen{}\left( y\right)\mathclose{}= \lim_{n}{} L\mathopen{}\left( {y}_{n}\right)\mathclose{} \in \overline{\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}} \).

Proposition IV.25

For densely defined Llinear operator\( L \), we have Llinear operator\( L \) is closable if and only if Ddomain(Llinear operator*) \( \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \) is dense in HHilbert space\( H \).

Proof. (⇒) Apply Proposition IV.24 to Llinear operator¯ \( \overline{L} \). Then Ranrange(Llinear operator¯)subset Ddomain(Llinear operator¯*) ¯=equals Ddomain(Llinear operator*) ¯ \( \operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}\subseteq \overline{ \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{} }= \overline{ \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} } \). Also for yvectorelement of (Ranrange(Llinear operator¯)) \( y\in { \mathopen{}\left(\operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}\right)\mathclose{} }^{\perp} \), Llinear operator¯(xvector), yvector=equals0zero \( \mathopen{}\left\langle{}\overline{L}\mathopen{}\left( x\right)\mathclose{}, y\right\rangle\mathclose{}= 0 \) for all xvectorelement ofDdomain(Llinear operator¯) \( x\in \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}\right)\mathclose{} \). Thus yvectorelement ofDdomain(Llinear operator¯*) \( y\in \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{} \) (with Llinear operator¯*(yvector)=equals0zero \( \overline{L}^{*}\mathopen{}\left( y\right)\mathclose{}= 0 \)). Thus (Ranrange(Llinear operator¯)) subsetDdomain(Llinear operator¯*)=equalsDdomain(Llinear operator*)¯ \( { \mathopen{}\left(\operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}\right)\mathclose{} }^{\perp}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( \overline{L}^{*}\right)\mathclose{}= \overline{\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}} \) and HHilbert space=equals Ranrange(Llinear operator¯)+plus (Ranrange(Llinear operator¯)) ¯subsetDdomain(Llinear operator*)¯ \( H= \overline{ \operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}+{ \mathopen{}\left(\operatorname{Ran}\mathopen{}\left( \overline{L}\right)\mathclose{}\right)\mathclose{} }^{\perp} }\subseteq \overline{\mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}} \).

(⇐) Suppose xvectornintegerconverges to0zero \( {x}_{n} \to 0 \) in Ddomain(Llinear operator) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \) and Llinear operator(xvectorninteger)converges towvector \( L\mathopen{}\left( {x}_{n}\right)\mathclose{} \to w \). Then for all yvectorelement ofDdomain(Llinear operator*) \( y\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \), Llinear operator(xvectorninteger), yvector=equalsxvectorninteger, Llinear operator*(yvector)converges to0zero \( \mathopen{}\left\langle{}L\mathopen{}\left( {x}_{n}\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}{x}_{n}, L^{*}\mathopen{}\left( y\right)\mathclose{}\right\rangle\mathclose{} \to 0 \). Also Llinear operator(xvectorninteger), yvectorconverges towvector, yvector \( \mathopen{}\left\langle{}L\mathopen{}\left( {x}_{n}\right)\mathclose{}, y\right\rangle\mathclose{} \to \mathopen{}\left\langle{}w, y\right\rangle\mathclose{} \), so wvector, yvector=equals0zero \( \mathopen{}\left\langle{}w, y\right\rangle\mathclose{}= 0 \). Thus wvectorelement of Ddomain(Llinear operator*) =equals{set0zero}set \( w\in { \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} }^{\perp}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \).

Back to Proposition IV.24. We have 1one+plusLlinear operator*(Llinear operator) :maps Ebounded linear map(Ebounded linear map*(HHilbert space)) toHHilbert space \( 1+ L^{*}\mathopen{}\left( L\right)\mathclose{} : E\mathopen{}\left( E^{*}\mathopen{}\left( H\right)\mathclose{}\right)\mathclose{} \to H \). For any yvectorelement ofDdomain(Llinear operator*(Llinear operator)) \( y\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\mathopen{}\left( L\right)\mathclose{}\right)\mathclose{} \) (i.e. yvector\( y \) with Llinear operator(yvector)element ofDdomain(Llinear operator*) \( L\mathopen{}\left( y\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \)), (1one+plusLlinear operator*(Llinear operator))(yvector), yvector=equalsyvector, yvector+plusLlinear operator*(Llinear operator(yvector)), yvector=equalsyvector2two+plusLlinear operator(yvector)2twogreater than or equal toyvector2twogreater than or equal to0zero . \[ \mathopen{}\left\langle{}\mathopen{}\left(1+ L^{*}\mathopen{}\left( L\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( y\right)\mathclose{}, y\right\rangle\mathclose{}= \mathopen{}\left\langle{}y, y\right\rangle\mathclose{}+\mathopen{}\left\langle{} L^{*}\mathopen{}\left( L\mathopen{}\left( y\right)\mathclose{}\right)\mathclose{}, y\right\rangle\mathclose{}= {\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}^{2}+{\mathopen{}\left\lVert{}L\mathopen{}\left( y\right)\mathclose{}\right\rVert\mathclose{}}^{2}\geq {\mathopen{}\left\lVert{}y\right\rVert\mathclose{}}^{2}\geq 0 \text{.} \] So, 1one+plusLlinear operator*(Llinear operator) \( 1+ L^{*}\mathopen{}\left( L\right)\mathclose{} \) is injective on Ddomain(Llinear operator*timesLlinear operator)subsetEbounded linear map(Ebounded linear map*(HHilbert space)) \( \mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}\subseteq E\mathopen{}\left( E^{*}\mathopen{}\left( H\right)\mathclose{}\right)\mathclose{} \). It follows that Ebounded linear map(Ebounded linear map*(HHilbert space))=equalsDdomain(Llinear operator*timesLlinear operator) \( E\mathopen{}\left( E^{*}\mathopen{}\left( H\right)\mathclose{}\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{} \), which is dense in HHilbert space\( H \).

Let Soperator:mapsHHilbert spaceto Ddomain(Llinear operator*(Llinear operator)) \( S : H \to \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\mathopen{}\left( L\right)\mathclose{}\right)\mathclose{} \) be the inverse map to 1one+plusLlinear operator*timesLlinear operator \( 1+ L^{*}L \). For any wvectorelement ofHHilbert space \( w\in H \), (1one+plusLlinear operator*timesLlinear operator)(Soperator(wvector)), wvector=equalswvector, Soperator(wvector)greater than or equal to Soperator(wvector) 2two . \[ \mathopen{}\left\langle{}\mathopen{}\left(1+ L^{*}L\right)\mathclose{}\mathopen{}\left( S\mathopen{}\left( w\right)\mathclose{}\right)\mathclose{}, w\right\rangle\mathclose{}= \mathopen{}\left\langle{}w, S\mathopen{}\left( w\right)\mathclose{}\right\rangle\mathclose{}\geq {\mathopen{}\left\lVert{}S\mathopen{}\left( w\right)\mathclose{}\right\rVert\mathclose{}}^{2} \text{.} \] Thus Soperator(wvector)2twoless than or equal towvectortimesSoperator(wvector) \( {\mathopen{}\left\lVert{}S\mathopen{}\left( w\right)\mathclose{}\right\rVert\mathclose{}}^{2}\leq \mathopen{}\left\lVert{}w\right\rVert\mathclose{}\mathopen{}\left\lVert{}S\mathopen{}\left( w\right)\mathclose{}\right\rVert\mathclose{} \), Soperator(wvector)less than or equal towvector \( \mathopen{}\left\lVert{}S\mathopen{}\left( w\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}w\right\rVert\mathclose{} \) and Soperatorelement ofbounded linear operators(HHilbert space) \( S\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \) with Soperatorless than or equal to1one \( \mathopen{}\left\lVert{}S\right\rVert\mathclose{}\leq 1 \) and wvector, Soperator(wvector)greater than or equal to0zero \( \mathopen{}\left\langle{}w, S\mathopen{}\left( w\right)\mathclose{}\right\rangle\mathclose{}\geq 0 \) for all wvectorelement ofHHilbert space \( w\in H \). Therefore Soperatorgreater than or equal to0zero \( S\geq 0 \). Write Soperator=equals (1one+plusLlinear operator*timesLlinear operator) 1inverse \( S= { \mathopen{}\left(1+ L^{*}L\right)\mathclose{} }^{-1} \). Also write (1one+plusLlinear operator*timesLlinear operator) 1one2two =equals Soperator 1one2two \( {\mathopen{}\left(1+ L^{*}L\right)\mathclose{}}^{{-}\frac{1}{2}}= {S}^{\frac{1}{2}} \).

Proposition IV.26

Let Llinear operator\( L \) be a closed, densely defined linear operator on HHilbert space\( H \). Then

  1. Ddomain(Llinear operator*timesLlinear operator) \( \mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{} \) is dense.
  2. 1one+plusLlinear operator*timesLlinear operator :maps Ddomain(Llinear operator*timesLlinear operator) toHHilbert space \( 1+ L^{*}L : \mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{} \to H \) is bijective.
  3. Its inverse Sbounded positive operatorequivalent (1one+plusLlinear operator*timesLlinear operator) 1inverse :mapsHHilbert spaceto Ddomain(Llinear operator*timesLlinear operator)subsetHHilbert space \( S\equiv { \mathopen{}\left(1+ L^{*}L\right)\mathclose{} }^{-1} : H \to \mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}\subseteq H \) is a bounded positive operator with Sbounded positive operatorless than or equal to1one \( \mathopen{}\left\lVert{}S\right\rVert\mathclose{}\leq 1 \).
  4. Llinear operatortimesSbounded positive operator1one2two=equalsLlinear operatortimes (1one+plusLlinear operator*timesLlinear operator) 1one2two \( L{S}^{\frac{1}{2}}= L{\mathopen{}\left(1+ L^{*}L\right)\mathclose{}}^{{-}\frac{1}{2}} \) maps Sbounded positive operator1one2two(HHilbert space) \( {S}^{\frac{1}{2}}\mathopen{}\left( H\right)\mathclose{} \) (a dense subspace of HHilbert space\( H \)) boundedly into HHilbert space\( H \), and Llinear operatortimesSbounded positive operator1one2twoless than or equal to1one \( \mathopen{}\left\lVert{}L{S}^{\frac{1}{2}}\right\rVert\mathclose{}\leq 1 \).

Proof. We have already shown all but the last part. Notice Sbounded positive operator1one2two(HHilbert space) ¯=equals (Kerkernel(Sbounded positive operator1one2two)) =equals (Kerkernel(Sbounded positive operator)) =equalsHHilbert space \( \overline{ {S}^{\frac{1}{2}}\mathopen{}\left( H\right)\mathclose{} }= { \mathopen{}\left(\operatorname{Ker}\mathopen{}\left( {S}^{\frac{1}{2}}\right)\mathclose{}\right)\mathclose{} }^{\perp}= { \mathopen{}\left(\operatorname{Ker}\mathopen{}\left( S\right)\mathclose{}\right)\mathclose{} }^{\perp}= H \), and Sbounded positive operator(HHilbert space)=equalsDdomain(Llinear operator*timesLlinear operator)subsetDdomain of operator(Llinear operator) \( S\mathopen{}\left( H\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}L\right)\mathclose{}\subseteq D\mathopen{}\left( L\right)\mathclose{} \). So, Sbounded positive operator1one2two(HHilbert space)subsetDdomain(Llinear operatortimesSbounded positive operator1one2two) \( {S}^{\frac{1}{2}}\mathopen{}\left( H\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L{S}^{\frac{1}{2}}\right)\mathclose{} \). Also, Llinear operator(Sbounded positive operator1one2two(Sbounded positive operator1one2two(xvector))) 2two =equals Llinear operator(Sbounded positive operator(xvector)) 2two =equalsLlinear operator(Sbounded positive operator(xvector)), Llinear operator(Sbounded positive operator(xvector))=equalsLlinear operator*(Llinear operator(Sbounded positive operator(xvector))), Sbounded positive operator(xvector)=equals(1one-minusSbounded positive operator)(xvector), Sbounded positive operator(xvector)less than or equal to Sbounded positive operator1one2two(xvector) 2two \[ {\mathopen{}\left\lVert{}L\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}\right\rVert\mathclose{}}^{2}= {\mathopen{}\left\lVert{}L\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \mathopen{}\left\langle{}L\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}, L\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{} L^{*}\mathopen{}\left( L\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}, S\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left(1-S\right)\mathclose{}\mathopen{}\left( x\right)\mathclose{}, S\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}\leq {\mathopen{}\left\lVert{}{S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}}^{2} \] because (1one+plusLlinear operator*timesLlinear operator)(Sbounded positive operator(xvector))=equalsxvector \( \mathopen{}\left(1+ L^{*}L\right)\mathclose{}\mathopen{}\left( S\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}= x \) and xvector, Sbounded positive operator(xvector)-minusSbounded positive operator(xvector)2twoless than or equal toxvector, Sbounded positive operator(xvector)=equalsSbounded positive operator1one2two(xvector), Sbounded positive operator1one2two(xvector)=equals Sbounded positive operator1one2two(xvector) 2two . \[ \mathopen{}\left\langle{}x, S\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}-{\mathopen{}\left\lVert{}S\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}}^{2}\leq \mathopen{}\left\langle{}\mathopen{}\left\langle{}x, S\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}{S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}\right\rangle\mathclose{}= {\mathopen{}\left\lVert{}{S}^{\frac{1}{2}}\mathopen{}\left( x\right)\mathclose{}\right\rVert\mathclose{}}^{2} \text{.} \]

Before dealing with self-adjoint operators, we consider a way to construct densely defined operators Llinear operator\( L \) for which Ddomain(Llinear operator)=equalsDdomain(Llinear operator*) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \).

Definition IV.27

A resolution of the identity in HHilbert space\( H \) is an increasing projection-valued map treal numberis mapped toQprojectiontreal number \( t\mapsto {Q}_{t} \) on Rreal numbers\( \mathbb{R} \) such that intersectiontreal numberQprojectiontreal number(HHilbert space)=equals{set0zero}set \( \bigcap_{t}{}{Q}_{t}\mathopen{}\left( H\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \) and uniontreal numberQprojectiontreal number(HHilbert space) ¯=equalsHHilbert space \( \overline{ \bigcup_{t}{}{Q}_{t}\mathopen{}\left( H\right)\mathclose{} }= H \). A spectral resolution of a bounded self-adjoint operator is the special case of this in which Qprojectiontreal number \( {Q}_{t} \) flattens out at 0zero\( 0 \) once treal number\( t \) moves far enough to the left and at 1one\( 1 \) once treal number\( t \) moves far enough to the right.

Remark IV.28

In general, we have limlimittreal numberinfinity Qprojectiontreal number(ξvector) =equals0zero=equalslimlimittreal number+infinity (1one-minusQprojectiontreal number)(ξvector) \( \lim_{t\to{-}\infty}{} {Q}_{t}\mathopen{}\left( ξ\right)\mathclose{} = 0= \lim_{t\to{+}\infty}{} \mathopen{}\left(1-{Q}_{t}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{} \) for all ξvectorelement ofHHilbert space \( ξ\in H \) by Lemma IV.10.

Remark IV.29

For the spectral resolution treal numberis mapped toQprojectiontreal number \( t\mapsto {Q}_{t} \), write Eoperatortreal number=equalsQprojectiontreal number-minusQprojectiontreal number \( {E}_{t}= {Q}_{t}-{Q}_{{-}t} \) for treal number>greater than0zero \( t\gt 0 \), and let HHilbert spacetreal number=equalsEoperatortreal number(HHilbert space) \( {H}_{t}= {E}_{t}\mathopen{}\left( H\right)\mathclose{} \). Notice that Eoperatorsreal numberless than or equal toEoperatortreal number \( {E}_{s}\leq {E}_{t} \) for 0zero<less thansreal numberless than or equal totreal number \( 0\lt s\leq t \) and that limlimittreal number+infinity Eoperatortreal number(ξvector) =equalsξvector \( \lim_{t\to{+}\infty}{} {E}_{t}\mathopen{}\left( ξ\right)\mathclose{} = ξ \) for all ξvector\( ξ \), i.e. the union of the HHilbert spacetreal number \( {H}_{t} \)'s is dense in HHilbert space\( H \). Now fix a continuous function fcontinuous function:mapsRreal numberstoCcomplex numbers \( f : \mathbb{R} \to \mathbb{C} \). For each τpositive real number>greater than0zero \( τ\gt 0 \), define the bounded operator Llinear operator(tuplefcontinuous function, τpositive real number)tuple=equalsLlinear operatorτpositive real number=equalsintegralτpositive real numberτpositive real numberfcontinuous function(treal number)dQprojectiontreal number \( {L}_{\mathopen{}\left(f, τ\right)\mathclose{}}= {L}_{τ}= \int _{{-}τ}^{τ}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}{Q}_{t} \). As in our discussion above of continuous functions of bounded self-adjoint operators and Theorem IV.5, the integral is the norm limit of Riemann-Stieltjes sums coming from partitions of [intervalτpositive real number, τpositive real number]interval \( \mathopen{}\left[{-}τ, τ\right]\mathclose{} \). Thus Llinear operatorτpositive real number \( {L}_{τ} \) commutes with each Qprojectiontreal number \( {Q}_{t} \), and Llinear operatorτpositive real number(Eoperatorτpositive real number)=equalsEoperatorτpositive real number(Llinear operatorτpositive real number)=equalsLlinear operatorτpositive real number \( {L}_{τ}\mathopen{}\left( {E}_{τ}\right)\mathclose{}= {E}_{τ}\mathopen{}\left( {L}_{τ}\right)\mathclose{}= {L}_{τ} \). Further, Llinear operatorτpositive real number(ξvector) 2two =equalsintegralτpositive real numberτpositive real number |modulusfcontinuous function(treal number)|modulus 2two d Qprojectiontreal number(ξvector), ξvector \( {\mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \int _{{-}τ}^{τ}{} {\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}}^{2} \,\mathrm{d} \mathopen{}\left\langle{}{Q}_{t}\mathopen{}\left( ξ\right)\mathclose{}, ξ\right\rangle\mathclose{} \) for every ξvector\( ξ \), which makes Llinear operatorτpositive real numberless than or equal tomaxmaximum |modulustreal number|modulusless than or equal toτpositive real number |modulusfcontinuous function(treal number)|modulus \( \mathopen{}\left\lVert{}{L}_{τ}\right\rVert\mathclose{}\leq \max_{ \mathopen{}\left\lvert{}t\right\rvert\mathclose{}\leq τ }{}\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{} \).

Proposition IV.30

For ξvectorelement ofHHilbert space \( ξ\in H \), we have supsupremumτpositive real number>greater than0zero Llinear operatortreal number(ξvector) <less thaninfinity \( \sup_{τ\gt 0}{} \mathopen{}\left\lVert{}{L}_{t}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{} \lt \infty \) if and only if limlimitτpositive real number+infinity Llinear operatorτpositive real number(ξvector) \( \lim_{τ\to{+}\infty}{} {L}_{τ}\mathopen{}\left( ξ\right)\mathclose{} \) exists (in norm).

Proof. (⇒) Take 0zero<less thanτpositive real number0zero<less thanτpositive real number1one<less than \( 0\lt {τ}_{0}\lt {τ}_{1}\lt \dotsb \) with τpositive real numbernintegerconverges toinfinity \( {τ}_{n} \to \infty \) and notice that Llinear operatorτpositive real number0zero(ξvector)=equalssummationjinteger=1oneNinteger (Llinear operatorτpositive real numberjinteger-minusLlinear operatorτpositive real numberjinteger-minus1one)(ξvector) =equalsLlinear operatorτpositive real numberNinteger(ξvector) \[ {L}_{{τ}_{0}}\mathopen{}\left( ξ\right)\mathclose{}= \sum_{j=1}^{N}{} \mathopen{}\left({L}_{{τ}_{j}}-{L}_{{τ}_{j-1}}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{} = {L}_{{τ}_{N}}\mathopen{}\left( ξ\right)\mathclose{} \] for every Nintegergreater than or equal to1one \( N\geq 1 \). The summands are mutually orthogonal, so Llinear operatorτpositive real number0zero(ξvector) 2two +plussummationjinteger=1oneNinteger (Llinear operatorτpositive real numberjinteger-minusLlinear operatorτpositive real numberjinteger-minus1one)(ξvector) 2two =equals Llinear operatorτpositive real numberNinteger(ξvector) 2two . \[ {\mathopen{}\left\lVert{}{L}_{{τ}_{0}}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}}^{2}+\sum_{j=1}^{N}{} {\mathopen{}\left\lVert{}\mathopen{}\left({L}_{{τ}_{j}}-{L}_{{τ}_{j-1}}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}}^{2} = {\mathopen{}\left\lVert{}{L}_{{τ}_{N}}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}}^{2} \text{.} \] By the assumption, it follows that the series Llinear operatorτpositive real number0zero(ξvector)+plussummationjinteger=1oneNinteger (Llinear operatorτpositive real numberjinteger-minusLlinear operatorτpositive real numberjinteger-minus1one)(ξvector) \( {L}_{{τ}_{0}}\mathopen{}\left( ξ\right)\mathclose{}+\sum_{j=1}^{N}{} \mathopen{}\left({L}_{{τ}_{j}}-{L}_{{τ}_{j-1}}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{} \) (with partial sums Llinear operatorτpositive real numberNinteger \( {L}_{{τ}_{N}} \)) converges in norm, say to ηvectorelement ofHHilbert space \( η\in H \). Notice that for τpositive real number>greater thanτpositive real numberNinteger \( τ\gt {τ}_{N} \), the vectors ηvector-minusLlinear operatorτpositive real number(ξvector) \( η-{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{} \) and (Llinear operatorτpositive real number-minusLlinear operatorτpositive real numberNinteger)(ξvector) \( \mathopen{}\left({L}_{τ}-{L}_{{τ}_{N}}\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{} \) are orthogonal, so ηvector-minusLlinear operatorτpositive real number(ξvector)less than or equal toηvector-minusLlinear operatorτpositive real numberNinteger(ξvector) \( \mathopen{}\left\lVert{}η-{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}η-{L}_{{τ}_{N}}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{} \).

The other direction is obvious.

Using the proposition, we define the operator Llinear operator=equalsLlinear operatorfcontinuous function \( L= {L}_{f} \) on the domain Ddomain(Llinear operator)=equals{setξvectorelement ofHHilbert space|such that supsupremumτpositive real number>greater than0zero Llinear operatorτpositive real number(ξvector) <less thaninfinity }set \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathopen{}\left\{\, ξ\in H\,\middle\vert\, , \sup_{τ\gt 0}{} \mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right\rVert\mathclose{} \lt \infty, \,\right\}\mathclose{} \) by Llinear operator(ξvector)=equalslimlimitτpositive real number+infinity Llinear operatorτpositive real number(ξvector) \( L\mathopen{}\left( ξ\right)\mathclose{}= \lim_{τ\to{+}\infty}{} {L}_{τ}\mathopen{}\left( ξ\right)\mathclose{} \), and write Llinear operator=equalsintegralinfinityinfinityfcontinuous function(treal number)d Qprojectiontreal number \( L= \int _{{-}\infty}^{\infty}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d} {Q}_{t} \). Notice that unionτpositive real numberHHilbert spaceτpositive real numbersubsetDdomain(Llinear operator) \( \bigcup_{τ}{}{H}_{τ}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \) (so Llinear operator\( L \) is densely defined), and that Llinear operator\( L \) coincides with Llinear operatorτpositive real number \( {L}_{τ} \) on HHilbert spaceτpositive real number \( {H}_{τ} \). If the given continuous function fcontinuous function\( f \) is bounded, then Ddomain(Llinear operator)=equalsHHilbert space \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= H \) and Llinear operator\( L \) is bounded with Llinear operatorless than or equal tosupsupremumtreal numberelement ofRreal numbers|modulusfcontinuous function(treal number)|modulus \( \mathopen{}\left\lVert{}L\right\rVert\mathclose{}\leq \sup_{t\in \mathbb{R}}{}\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{} \).

Proposition IV.31

Ddomain(Llinear operator)=equalsDdomain(Llinear operator*) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \) and Llinear operator*=equalsLlinear operatorfcontinuous function¯complex conjugate \( L^{*}= {L}_{\overline{f}} \).

Proof. Calculating with Riemann-Stieltjes sums, we see that Llinear operatorτpositive real number*=equalsLlinear operator(tuplefcontinuous function¯complex conjugate, τpositive real number)tuple \( {L}_{τ}^{*}= {L}_{{\mathopen{}\left(\overline{f}, τ\right)\mathclose{}}_{}} \) for τpositive real number>greater than0zero \( τ\gt 0 \), and Llinear operatorτpositive real number*(ηvector) 2two =equalsintegralτpositive real numberτpositive real number |modulusfcontinuous function(treal number)|modulus 2two d Qprojectiontreal number(ηvector), ηvector =equals Llinear operatorτpositive real number(ηvector) 2two \[ {\mathopen{}\left\lVert{} {L}_{τ}^{*}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \int _{{-}τ}^{τ}{} {\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}}^{2} \,\mathrm{d} \mathopen{}\left\langle{}{Q}_{t}\mathopen{}\left( η\right)\mathclose{}, η\right\rangle\mathclose{} = {\mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}}^{2} \] for all ηvectorelement ofHHilbert space \( η\in H \). Notice this norm equality implies Ddomain(Llinear operator)=equalsDdomain(Llinear operatorfcontinuous function¯complex conjugate) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( {L}_{\overline{f}}\right)\mathclose{} \).

To show that Ddomain(Llinear operator*)subsetDdomain(Llinear operator) \( \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \), fix ηvectorelement ofDdomain(Llinear operator*) \( η\in \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \), and let φbounded linear functional\( φ \) be the bounded linear functional on Ddomain(Llinear operator) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \) defined by φbounded linear functional(ξvector)=equalsLlinear operator(ξvector), ηvector \( φ\mathopen{}\left( ξ\right)\mathclose{}= \mathopen{}\left\langle{}L\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{} \). For ξvectorelement ofHHilbert spaceτpositive real number \( ξ\in {H}_{τ} \), we have φbounded linear functional(ξvector)=equalsLlinear operatorτpositive real number(ξvector), ηvector=equalsξvector, Llinear operatorτpositive real number*(ηvector) \( φ\mathopen{}\left( ξ\right)\mathclose{}= \mathopen{}\left\langle{}{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, {L}_{τ}^{*}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{} \), so φbounded linear functional|restricted toHHilbert spaceτpositive real number=equalsLlinear operatorτpositive real number*(ηvector)=equalsLlinear operatorτpositive real number(ηvector) . \[ \mathopen{}\left\lVert{}φ|{H}_{τ}\right\rVert\mathclose{}= \mathopen{}\left\lVert{} {L}_{τ}^{*}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{} \text{.} \] This makes Llinear operatorτpositive real number(ηvector)less than or equal toφbounded linear functional \( \mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}φ\right\rVert\mathclose{} \) for all τpositive real number>greater than0zero \( τ\gt 0 \), which puts ηvectorelement ofDdomain(Llinear operator) \( η\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \).

On the other hand, for ξvector \( ξ \) and ηvector \( η \) in Ddomain(Llinear operator) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \), we have |modulusLlinear operator(ξvector), ηvector|modulus=equalslimlimitτpositive real numberinfinity |modulusLlinear operatorτpositive real number(ξvector), ηvector|modulus =equalslimlimitτpositive real numberinfinity |modulusξvector, Llinear operatorτpositive real number*(ηvector)|modulus less than or equal toξvectortimessupsupremumτpositive real number>greater than0zero Llinear operatorτpositive real number(ηvector) =equalsξvectortimesLlinear operator(ηvector) . \[ \mathopen{}\left\lvert{}\mathopen{}\left\langle{}L\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}\right\rvert\mathclose{}= \lim_{τ\to\infty}{} \mathopen{}\left\lvert{}\mathopen{}\left\langle{}{L}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}\right\rvert\mathclose{} = \lim_{τ\to\infty}{} \mathopen{}\left\lvert{}\mathopen{}\left\langle{}ξ, {L}_{τ}^{*}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}\right\rvert\mathclose{} \leq \mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}\sup_{τ\gt 0}{} \mathopen{}\left\lVert{}{L}_{τ}\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{} = \mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}\mathopen{}\left\lVert{}L\mathopen{}\left( η\right)\mathclose{}\right\rVert\mathclose{} \text{.} \] It follows that Ddomain(Llinear operator)subsetDdomain(Llinear operator*) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \), and hence Ddomain(Llinear operator)=equalsDdomain(Llinear operator*) \( \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( L^{*}\right)\mathclose{} \).

Finally, take ξvectorelement ofDdomain(Llinear operator) \( ξ\in \mathop{\mathcal{D}}\mathopen{}\left( L\right)\mathclose{} \) and ηvectorelement ofHHilbert spaceτpositive real number \( η\in {H}_{τ} \). For all treal numbergreater than or equal toτpositive real number \( t\geq τ \), we have Llinear operator*(ξvector), ηvector=equalsξvector, Llinear operator(ηvector)=equalsξvector, Llinear operatortreal number(ηvector)=equalsLlinear operator(tuplefcontinuous function¯complex conjugate, treal number)tuple(ξvector), ηvector . \[ \mathopen{}\left\langle{} L^{*}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, L\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, {L}_{t}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}{L}_{{\mathopen{}\left(\overline{f}, t\right)\mathclose{}}_{}}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{} \text{.} \] Letting treal number\( t \) approach infinity\( \infty \), we get Llinear operator*(ξvector), ηvector=equalsLlinear operatorfcontinuous function¯complex conjugate(ξvector), ηvector \( \mathopen{}\left\langle{} L^{*}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}{L}_{\overline{f}}\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{} \). Since the union of the HHilbert spaceτpositive real number \( {H}_{τ} \)'s is dense in HHilbert space\( H \), we conclude that Llinear operator*(ξvector)=equalsLlinear operatorfcontinuous function¯complex conjugate(ξvector) \( L^{*}\mathopen{}\left( ξ\right)\mathclose{}= {L}_{\overline{f}}\mathopen{}\left( ξ\right)\mathclose{} \).

Definition IV.32

An operator Toperator\( T \) in HHilbert space\( H \) is self-adjoint provided Ddomain(Toperator)=equalsDdomain(Toperator*) \( \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( T^{*}\right)\mathclose{} \) and that Toperator(ξvector), ηvector=equalsξvector, Toperator(ηvector) \( \mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, T\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{} \) for all ξvector\( ξ \) and ηvector\( η \) in Ddomain(Toperator) \( \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \).

Remark IV.33

Such an operator is necessarily closed because the adjoint of any operator is closed.

Example IV.34

For any resolution of the identity treal numberis mapped toQprojectiontreal number \( t\mapsto {Q}_{t} \), the operator Llinear operatorfcontinuous function \( {L}_{f} \) is self-adjoint for real fcontinuous function\( f \) by the proposition above.

Example IV.35

Let HHilbert space=equalsL2Lebesgue space(Xnormed linear spaceμmeasure) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( X, μ\right)\mathclose{} \). For any measurable function αmeasurable function:mapsXnormed linear spaceto (intervalinfinity, infinity)interval \( α : X \to \mathopen{}\left({-}\infty, \infty\right)\mathclose{} \), the operator of multiplication by αmeasurable function\( α \) on the domain {setξfunctionelement ofL2Lebesgue space|such that αmeasurable function(ξfunction)element ofL2Lebesgue space }set \( \mathopen{}\left\{\, ξ\in \mathrm{L}^{\mathrm{2}}\,\middle\vert\, , α\mathopen{}\left( ξ\right)\mathclose{}\in \mathrm{L}^{\mathrm{2}}, \,\right\}\mathclose{} \) is densely defined and self-adjoint. The given domain is dense because it contains L2Lebesgue space(|modulusαmeasurable function|modulus1inverse([intervalninteger, ninteger]interval)) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( {\mathopen{}\left\lvert{}α\right\rvert\mathclose{}}^{-1}\mathopen{}\left( \mathopen{}\left[n, {-}n\right]\mathclose{}\right)\mathclose{}\right)\mathclose{} \) for every ninteger\( n \). The argument for self-adjointness resembles the proof of the proposition above. Observe that letting Qprojectiontreal number\( {Q}_{t} \) equal the projection on L2Lebesgue space(αmeasurable function1inverse((intervalinfinity, treal number]interval)) \( \mathrm{L}^{\mathrm{2}}\mathopen{}\left( {α}^{-1}\mathopen{}\left( \mathopen{}\left({-}\infty, t\right]\mathclose{}\right)\mathclose{}\right)\mathclose{} \) gives a resolution of the identity.

Remark IV.36

Our version of the spectral theorem, coming up, says that Example IV.34 with fcontinuous function(treal number)=equalstreal number \( f\mathopen{}\left( t\right)\mathclose{}= t \) is universal. Another version of the spectral theorem, which we will not prove, says that Example IV.35 is also universal.

We now proceed to show that for any densely defined self-adjoint operator Toperator\( T \), there is a resolution of the identity treal numberis mapped toQprojectiontreal number \( t\mapsto {Q}_{t} \) such that Toperator=equalsintegralinfinityinfinitytreal numberd Qprojectiontreal number \( T= \int _{{-}\infty}^{\infty}{}t\,\mathrm{d} {Q}_{t} \) (including coincidence of the domains). The main idea is to change variables in the spectral resolution of the bounded self-adjoint operator Aself-adjoint operator=equalsToperatortimes (1one+plusToperator2two) 1one2two \( A= T{\mathopen{}\left(1+{T}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}} \) to obtain the desired spectral resolution of the identity in HHilbert space\( H \).

From Proposition IV.26, with Llinear operator=equalsLlinear operator*=equalsToperator \( L= L^{*}= T \), we have the bounded positive operator Soperator=equals (1one+plusToperator2two) 1inverse \( S= { \mathopen{}\left(1+{T}^{2}\right)\mathclose{} }^{-1} \) mapping HHilbert space\( H \) injectively onto Ddomain(Toperator2two)=equals{setξvectorelement ofDdomain(Toperator)|such that Toperator(ξvector)element ofDdomain(Toperator) }set \( \mathop{\mathcal{D}}\mathopen{}\left( {T}^{2}\right)\mathclose{}= \mathopen{}\left\{\, ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}\,\middle\vert\, , T\mathopen{}\left( ξ\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}, \,\right\}\mathclose{} \). Notice that this makes Soperator(HHilbert space)subsetDdomain(Toperator) \( S\mathopen{}\left( H\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \).

Lemma IV.37

Toperator(Soperator(ξvector))=equalsSoperator(Toperator(ξvector)) \( T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{} \) for all ξvectorelement ofDdomain(Toperator) \( ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \).

Proof. Notice that Toperator2two(Soperator(Ddomain(Toperator)))=equals(1one-minusSoperator)(Ddomain(Toperator))subsetDdomain(Toperator) \( {T}^{2}\mathopen{}\left( S\mathopen{}\left( \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left(1-S\right)\mathclose{}\mathopen{}\left( \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \), so the following calculation makes sense for ξvectorelement ofDdomain(Toperator) \( ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \): (1one+plusToperator2two)(Toperator(Soperator(ξvector)))=equalsToperator((I+plusToperator2two)(Soperator(ξvector)))=equalsToperator(ξvector)=equals(1one+plusToperator2two)(Soperator(Toperator(ξvector))) . \[ \mathopen{}\left(1+{T}^{2}\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( \mathopen{}\left(I+{T}^{2}\right)\mathclose{}\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( ξ\right)\mathclose{}= \mathopen{}\left(1+{T}^{2}\right)\mathclose{}\mathopen{}\left( S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{} \text{.} \] Since Toperator(Soperator(ξvector)) \( T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{} \) and Soperator(Toperator(ξvector)) \( S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{} \) are both in Ddomain(Toperator2two) \( \mathop{\mathcal{D}}\mathopen{}\left( {T}^{2}\right)\mathclose{} \) and 1one+plusToperator2two \( 1+{T}^{2} \) is injective on Ddomain(Toperator2two) \( \mathop{\mathcal{D}}\mathopen{}\left( {T}^{2}\right)\mathclose{} \), we get Toperator(Soperator(ξvector))=equalsSoperator(Toperator(ξvector)) \( T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{} \) as promised.

The following lemma improves slightly on part 4 of Proposition IV.26.

Lemma IV.38

Soperator1one2twotimesToperatorsubsetDdomain(Toperator) \( {S}^{\frac{1}{2}}T\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \).

Proof. For ηvectorelement ofHHilbert space \( η\in H \) and ξvectorelement ofDdomain(Toperator) \( ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \), we have |modulusToperator(ξvector), Soperator1one2two(ηvector)|modulus=equals|modulusSoperator1one2two(Toperator(ξvector)), ηvector|modulusless than or equal toSoperator1one2two(Toperator(ξvector))timesηvector . \[ \mathopen{}\left\lvert{}\mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}\right\rvert\mathclose{}= \mathopen{}\left\lvert{}\mathopen{}\left\langle{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, η\right\rangle\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right\rVert\mathclose{}\mathopen{}\left\lVert{}η\right\rVert\mathclose{} \text{.} \] Furthermore, using Toperator(Soperator(ξvector))element ofDdomain(Toperator)=equalsDdomain(Toperator*) \( T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( T^{*}\right)\mathclose{} \), Soperator1one2two(Toperator(ξvector)) 2two =equalsSoperator1one2two(Toperator(ξvector)), Soperator1one2two(Toperator(ξvector))=equalsSoperator(Toperator(ξvector)), Toperator(ξvector)=equalsToperator(Soperator(ξvector)), Toperator(ξvector)=equalsToperator2two(Soperator(ξvector)), ξvector=equals(1one-minusSoperator)(ξvector), ξvectorless than or equal toξvector2two , \[ {\mathopen{}\left\lVert{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right\rVert\mathclose{}}^{2}= \mathopen{}\left\langle{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, T\mathopen{}\left( ξ\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, T\mathopen{}\left( ξ\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}{T}^{2}\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, ξ\right\rangle\mathclose{}= \mathopen{}\left\langle{}\mathopen{}\left(1-S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, ξ\right\rangle\mathclose{}\leq {\mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}}^{2} \text{,} \] so |modulusToperator(ξvector), Soperator1one2two(ηvector)|modulusless than or equal toξvectortimesηvector . \( \mathopen{}\left\lvert{}\mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}\right\rvert\mathclose{}\leq \mathopen{}\left\lVert{}ξ\right\rVert\mathclose{}\mathopen{}\left\lVert{}η\right\rVert\mathclose{} \text{.} \) This means Soperator1one2two(ηvector)element ofDdomain(Toperator*)=equalsDdomain(Toperator) \( {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( T^{*}\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \).

We know from Proposition IV.26 that 0zeroless than or equal toSoperatorless than or equal to1one \( 0\leq S\leq 1 \), so functional calculus gives us fcontinuous function(Soperator) \( f\mathopen{}\left( S\right)\mathclose{} \) for fcontinuous functionelement ofCspace of continuous functions([interval0zero, 1one]interval) \( f\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \).

Lemma IV.39

For every fcontinuous functionelement ofCspace of continuous functions([interval0zero, 1one]interval) \( f\in \mathrm{C}\mathopen{}\left( \mathopen{}\left[0, 1\right]\mathclose{}\right)\mathclose{} \), the operator fcontinuous function(Soperator) \( f\mathopen{}\left( S\right)\mathclose{} \) maps Ddomain(Toperator) \( \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \) into itself and commutes with Toperator\( T \) on Ddomain(Toperator) \( \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \).

Proof. We know this is true for fcontinuous function(Soperator)=equalsSoperator \( f\mathopen{}\left( S\right)\mathclose{}= S \). Fix ξvectorelement ofDdomain(Toperator) \( ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \). Then Soperator2two(ξvector)element ofSoperator(Toperator)subsetDdomain(Toperator) \( {S}^{2}\mathopen{}\left( ξ\right)\mathclose{}\in S\mathopen{}\left( T\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \), and Soperator2two(Toperator(ξvector))=equalsSoperator(Toperator(Soperator(ξvector)))=equalsToperator(Soperator2two(ξvector)) \( {S}^{2}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= S\mathopen{}\left( T\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( {S}^{2}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{} \). And so on: the assertion of the lemma holds when fcontinuous function\( f \) is a polynomial. For general continuous fcontinuous function\( f \), get a sequence (sequenceppolynomialninteger)sequence \( \mathopen{}\left({p}_{n}\right)\mathclose{} \) of polynomials converging uniformly to fcontinuous function\( f \) on [interval0zero, 1one]interval \( \mathopen{}\left[0, 1\right]\mathclose{} \), so ppolynomialninteger(Soperator)-minusfcontinuous function(Soperator)converges to0zero \( \mathopen{}\left\lVert{}{p}_{n}\mathopen{}\left( S\right)\mathclose{}-f\mathopen{}\left( S\right)\mathclose{}\right\rVert\mathclose{} \to 0 \). In G(Toperator) \( \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{} \), we have (tupleppolynomialninteger(Soperator)(ξvector), Toperator(ppolynomialninteger(Soperator)(ξvector)))tuple=equals(tupleppolynomialninteger(Soperator)(ξvector), ppolynomialninteger(Soperator)(Toperator(ξvector)))tupleconverges to(tuplefcontinuous function(Soperator)(ξvector), fcontinuous function(Soperator)(Toperator(ξvector)))tuple . \[ \mathopen{}\left({p}_{n}\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, T\mathopen{}\left( {p}_{n}\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left({p}_{n}\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, {p}_{n}\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{} \to \mathopen{}\left(f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{} \text{.} \] This puts (tuplefcontinuous function(Soperator)(ξvector), fcontinuous function(Soperator)(Toperator(ξvector)))tupleelement ofG(Toperator) \( \mathopen{}\left(f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}, f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{} \) because Toperator\( T \) is a closed operator, so fcontinuous function(Soperator)(ξvector)element ofDdomain(Toperator) \( f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \) and Toperator(fcontinuous function(Soperator)(ξvector))=equalsfcontinuous function(Soperator)(Toperator(ξvector)) \( T\mathopen{}\left( f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= f\mathopen{}\left( S\right)\mathclose{}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{} \).

Let Aself-adjoint operator=equalsToperatortimesSoperator1one2two \( A= T{S}^{\frac{1}{2}} \). By Lemma IV.38, this defines Aself-adjoint operator\( A \) on all of HHilbert space\( H \). From Proposition IV.26 we know that Aself-adjoint operator\( A \) is bounded, with Aself-adjoint operatorless than or equal to1one \( \mathopen{}\left\lVert{}A\right\rVert\mathclose{}\leq 1 \).

Lemma IV.40

Aself-adjoint operator=equalsAself-adjoint operator* \( A= A^{*} \) and Aself-adjoint operator2two=equals1one-minusSoperator \( {A}^{2}= 1-S \).

Proof. For ξvectorelement ofDdomain(Toperator) \( ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \) and ηvectorelement ofHHilbert space \( η\in H \), we use Lemma IV.38 and Lemma IV.39 to obtain Aself-adjoint operator(ξvector), ηvector=equalsToperator(Soperator1one2two(ξvector)), ηvector=equalsSoperator1one2two(Toperator(ξvector)), ηvector=equalsToperator(ξvector), Soperator1one2two(ηvector)=equalsξvector, Toperator(Soperator1one2two(ηvector))=equalsξvector, Aself-adjoint operator(ηvector) . \[ \mathopen{}\left\langle{}A\mathopen{}\left( ξ\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}T\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}{S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}, η\right\rangle\mathclose{}= \mathopen{}\left\langle{}T\mathopen{}\left( ξ\right)\mathclose{}, {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, T\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( η\right)\mathclose{}\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}ξ, A\mathopen{}\left( η\right)\mathclose{}\right\rangle\mathclose{} \text{.} \] Since Aself-adjoint operator\( A \) is bounded and Ddomain(Toperator)¯=equalsHHilbert space \( \overline{\mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{}}= H \), this works for any ξvectorelement ofHHilbert space \( ξ\in H \).

For the second claim, for ξvectorelement ofDdomain(Toperator) \( ξ\in \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \), we again use Lemma IV.39 to obtain Aself-adjoint operator2two(ξvector)=equalsAself-adjoint operator(Toperator(Soperator1one2two(ξvector)))=equalsAself-adjoint operator(Soperator1one2two(Toperator(ξvector)))=equalsToperator(Soperator(Toperator(ξvector)))=equalsToperator2two(Soperator(ξvector))=equals(1one-minusSoperator)(ξvector) , \[ {A}^{2}\mathopen{}\left( ξ\right)\mathclose{}= A\mathopen{}\left( T\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= A\mathopen{}\left( {S}^{\frac{1}{2}}\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( S\mathopen{}\left( T\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{}= {T}^{2}\mathopen{}\left( S\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}= \mathopen{}\left(1-S\right)\mathclose{}\mathopen{}\left( ξ\right)\mathclose{} \text{,} \] so the bounded operators Aself-adjoint operator2two \( {A}^{2} \) and 1one-minusSoperator \( 1-S \) agree on a dense subspace.

Let Aself-adjoint operator\( A \) have spectral resolution λreal numberis mapped toPprojectionλreal number \( λ\mapsto {P}_{λ} \). Then Pprojectionλreal number=equals0zero \( {P}_{λ}= 0 \) for λreal number<less than1one \( λ\lt {-}1 \) and Pprojectionλreal number=equals1one \( {P}_{λ}= 1 \) for λreal number>greater than1one \( λ\gt 1 \). Further, ±1one \( {\pm}1 \) are not eigenvalues of Aself-adjoint operator\( A \), because 1one-minusAself-adjoint operator2two=equalsBself-adjoint operator \( 1-{A}^{2}= B \), whose kernel is {set0zero}set \( \mathopen{}\left\{\, 0\,\right\}\mathclose{} \). By Proposition IV.12, this means intersectiontreal numberless than or equal to1onePprojectiontreal number(HHilbert space)=equals{set0zero}set \( \bigcap_{t\leq {-}1}{}{P}_{t}\mathopen{}\left( H\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \) and uniontreal numberless than or equal to1onePprojectiontreal number(HHilbert space) ¯=equalsHHilbert space \( \overline{ \bigcup_{t\leq {-}1}{}{P}_{t}\mathopen{}\left( H\right)\mathclose{} }= H \). Consider the strictly increasing function Φfunction:mapsRreal numbersto (interval1one, 1one)interval \( Φ : \mathbb{R} \to \mathopen{}\left({-}1, 1\right)\mathclose{} \) defined by Φfunction(treal number)=equalstreal numbertimes (1one+plustreal number2two) 1one2two \( Φ\mathopen{}\left( t\right)\mathclose{}= t{\mathopen{}\left(1+{t}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}} \). Let Qprojectiontreal number=equalsPprojectionΦfunction(treal number) \( {Q}_{t}= {P}_{Φ\mathopen{}\left( t\right)\mathclose{}} \). This makes intersectiontreal numberQprojectiontreal number(HHilbert space)=equalsintersectiontreal numberless than or equal to1onePprojectiontreal number(HHilbert space)=equals{set0zero}set \( \bigcap_{t}{}{Q}_{t}\mathopen{}\left( H\right)\mathclose{}= \bigcap_{t\leq {-}1}{}{P}_{t}\mathopen{}\left( H\right)\mathclose{}= \mathopen{}\left\{\, 0\,\right\}\mathclose{} \) and uniontreal numberQprojectiontreal number(HHilbert space) ¯=equals uniontreal numberless than or equal to1onePprojectiontreal number(HHilbert space) ¯=equalsHHilbert space \( \overline{ \bigcup_{t}{}{Q}_{t}\mathopen{}\left( H\right)\mathclose{} }= \overline{ \bigcup_{t\leq {-}1}{}{P}_{t}\mathopen{}\left( H\right)\mathclose{} }= H \), so treal numberis mapped toQprojectiontreal number \( t\mapsto {Q}_{t} \) is a resolution of the identity. Define the self-adjoint operator Bself-adjoint operator\( B \) by Bself-adjoint operator=equalsintegralinfinityinfinitytreal numberd Qprojectiontreal number . \[ B= \int _{{-}\infty}^{\infty}{}t\,\mathrm{d} {Q}_{t} \text{.} \]

Our mission will be accomplished once we show that Ddomain(Bself-adjoint operator)=equalsDdomain(Toperator) \( \mathop{\mathcal{D}}\mathopen{}\left( B\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \) and Bself-adjoint operator=equalsToperator \( B= T \), that is, that G(Kcompact operator)=equalsG(GgroupToperator) \( \mathop{\mathcal{G}}\mathopen{}\left( K\right)\mathclose{}= \mathop{\mathcal{G}}\mathopen{}\left( G, T\right)\mathclose{} \).

As before, write Ebounded linear mapτpositive real number=equalsQprojectionτpositive real number-minusQprojectionτpositive real number=equalsPprojectionΦfunction(τpositive real number)-minusPprojectionΦfunction(τpositive real number) \( {E}_{τ}= {Q}_{τ}-{Q}_{{-}τ}= {P}_{Φ\mathopen{}\left( τ\right)\mathclose{}}-{P}_{{-}Φ\mathopen{}\left( τ\right)\mathclose{}} \) for τpositive real number>greater than0zero \( τ\gt 0 \), and HHilbert spaceτpositive real number=equalsEbounded linear mapτpositive real number(Toperator) \( {H}_{τ}= {E}_{τ}\mathopen{}\left( T\right)\mathclose{} \). What happens when we compress Bself-adjoint operator\( B \), Aself-adjoint operator\( A \), and Toperator\( T \) to HHilbert spaceτpositive real number \( {H}_{τ} \)? Since Ebounded linear mapτpositive real number \( {E}_{τ} \) is a difference of spectral projections for Bself-adjoint operator\( B \) and for Aself-adjoint operator\( A \), the subspace HHilbert spaceτpositive real number \( {H}_{τ} \) is invariant for both of these operators, and the compressions Bself-adjoint operatorτpositive real number=equalsBself-adjoint operator(Ebounded linear mapτpositive real number)=equalsEbounded linear mapτpositive real number(Bself-adjoint operator) \( {B}_{τ}= B\mathopen{}\left( {E}_{τ}\right)\mathclose{}= {E}_{τ}\mathopen{}\left( B\right)\mathclose{} \) and Aself-adjoint operatorτpositive real number=equalsAself-adjoint operator(Ebounded linear mapτpositive real number)=equalsEbounded linear mapτpositive real number(Aself-adjoint operator) \( {A}_{τ}= A\mathopen{}\left( {E}_{τ}\right)\mathclose{}= {E}_{τ}\mathopen{}\left( A\right)\mathclose{} \) are given as spectral integrals by Bself-adjoint operatorτpositive real number=equalsintegralτpositive real numberτpositive real numbertreal numberdQprojectiontreal number \[ {B}_{τ}= \int _{{-}τ}^{τ}{}t\,\mathrm{d}{Q}_{t} \] and Aself-adjoint operatorτpositive real number=equalsintegralΦfunction(τpositive real number)Φfunction(τpositive real number)λreal numberdPprojectionλreal number . \[ {A}_{τ}= \int _{{-}Φ\mathopen{}\left( τ\right)\mathclose{}}^{Φ\mathopen{}\left( τ\right)\mathclose{}}{}λ\,\mathrm{d}{P}_{λ} \text{.} \] They satisfy infinity<less thanτpositive real numberless than or equal toBself-adjoint operatorτpositive real numberless than or equal toτpositive real number<less thaninfinity \[ {-}\infty\lt {-}τ\leq {B}_{τ}\leq τ\lt \infty \] and 1one<less thanΦfunction(τpositive real number)less than or equal toAself-adjoint operatorτpositive real numberless than or equal toΦfunction(τpositive real number)<less than1one . \[ {-}1\lt {-}Φ\mathopen{}\left( τ\right)\mathclose{}\leq {A}_{τ}\leq Φ\mathopen{}\left( τ\right)\mathclose{}\lt 1 \text{.} \] Notice this makes 1one-minusAself-adjoint operatorτpositive real number2two \( 1-{{A}_{τ}}^{2} \) invertible.

Lemma IV.41

For τpositive real number>greater than0zero \( τ\gt 0 \): (i) HHilbert spaceτpositive real numbersubsetDdomain(Toperator) \( {H}_{τ}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \); and (ii) for ξvectorelement ofHHilbert spaceτpositive real number \( ξ\in {H}_{τ} \), we have Toperator(ξvector)=equalsAself-adjoint operatorτpositive real numbertimes (1one-minusAself-adjoint operatorτpositive real number2two) 1one2two timesξvector \( T\mathopen{}\left( ξ\right)\mathclose{}= {A}_{τ}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}ξ \).

Proof. Take ξvectorelement ofHHilbert spaceτpositive real number \( ξ\in {H}_{τ} \). For (i), observe (1one-minusAself-adjoint operator2two)timesξvector=equals(1one-minusAself-adjoint operatorτpositive real number2two)timesξvector \( \mathopen{}\left(1-{A}^{2}\right)\mathclose{}ξ= \mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}ξ \), and thus ξvector=equals (1one-minusAself-adjoint operatorτpositive real number2two) 1one times(1one-minusAself-adjoint operator2two)timesξvector=equals(1one-minusAself-adjoint operator2two)times (1one-minusAself-adjoint operatorτpositive real number2two) 1one timesξvector=equalsSoperatortimes (1one-minusAself-adjoint operatorτpositive real number2two) 1one timesξvectorelement ofSoperator(Toperator)subsetDdomain(Toperator) . \[ ξ= {\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}1}\mathopen{}\left(1-{A}^{2}\right)\mathclose{}ξ= \mathopen{}\left(1-{A}^{2}\right)\mathclose{}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}1}ξ= S{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}1}ξ\in S\mathopen{}\left( T\right)\mathclose{}\subseteq \mathop{\mathcal{D}}\mathopen{}\left( T\right)\mathclose{} \text{.} \]

For (ii), recall Aself-adjoint operator=equalsToperatortimesSoperator1one2two=equalsToperatortimes (1one-minusAself-adjoint operator2two) 1one2two \( A= T{S}^{\frac{1}{2}}= T{\mathopen{}\left(1-{A}^{2}\right)\mathclose{}}^{\frac{1}{2}} \), so Aself-adjoint operatorτpositive real number=equalsToperatortimes (1one-minusAself-adjoint operatorτpositive real number2two) 1one2two \( {A}_{τ}= T{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{\frac{1}{2}} \). Evaluating at ξvector\( ξ \), we get Toperatortimesξvector=equalsToperatortimes (1one-minusAself-adjoint operatorτpositive real number2two) 1one2two times (1one-minusAself-adjoint operatorτpositive real number2two) 1one2two timesξvector=equalsAself-adjoint operatorτpositive real numbertimes (1one-minusAself-adjoint operatorτpositive real number2two) 1one2two timesξvector . \[ Tξ= T{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{\frac{1}{2}}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}ξ= {A}_{τ}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}}ξ \text{.} \]

Thus Toperator\( T \) maps HHilbert spaceτpositive real number \( {H}_{τ} \) boundedly into itself, and commutes with Ebounded linear mapτpositive real number \( {E}_{τ} \). The compression Fbounded linear mapτpositive real number \( {F}_{τ} \) given by Fbounded linear mapτpositive real number=equalsToperatortimesEbounded linear mapτpositive real number=equalsEbounded linear mapτpositive real numbertimesToperator \( {F}_{τ}= T{E}_{τ}= {E}_{τ}T \) is, by part (ii) of the lemma, Aself-adjoint operatorτpositive real numbertimes (1one-minusAself-adjoint operatorτpositive real number2two) 1one2two \( {A}_{τ}{\mathopen{}\left(1-{{A}_{τ}}^{2}\right)\mathclose{}}^{{-}\frac{1}{2}} \). This means Fbounded linear mapτpositive real number \( {F}_{τ} \) is given by the spectral integral Fbounded linear mapτpositive real number=equalsintegralΦfunction(τpositive real number)Φfunction(τpositive real number) λreal number 1one-minusλreal number2two dPprojectionλreal number . \[ {F}_{τ}= \int _{{-}Φ\mathopen{}\left( τ\right)\mathclose{}}^{Φ\mathopen{}\left( τ\right)\mathclose{}}{}\frac{λ}{\sqrt{1-{λ}^{2}}}\,\mathrm{d}{P}_{λ} \text{.} \]

Notice that the integrand is Φfunction1inverse(λreal number) \( {Φ}^{-1}\mathopen{}\left( λ\right)\mathclose{} \).

Lemma IV.42

Fbounded linear mapτpositive real number=equalsBself-adjoint operatorτpositive real number \( {F}_{τ}= {B}_{τ} \) for all τpositive real number>greater than0zero \( τ\gt 0 \).

Proof. Both integrals are norm limits of Riemann-Stieltjes sums. Just as in the scalar case, the change of variables treal number=equalsΦfunction1inverse(λreal number) \( t= {Φ}^{-1}\mathopen{}\left( λ\right)\mathclose{} \) transforms Riemann-Stieltjes sums for the integral in λreal number\( λ \) for Fbounded linear mapτpositive real number \( {F}_{τ} \) into Riemann-Stieltjes sums for the integral in treal number\( t \) for Bself-adjoint operatorτpositive real number \( {B}_{τ} \). The reverse change of variables λreal number=equalsΦfunction(treal number) \( λ= Φ\mathopen{}\left( t\right)\mathclose{} \) inverts this transformation.

Now we can prove the theorem.

Theorem IV.43

For every densely defined self-adjoint operator Toperator\( T \) in HHilbert space\( H \), there is a resolution of the identity treal numberis mapped toQprojectiontreal number \( t\mapsto {Q}_{t} \) such that Toperator=equalsintegralinfinityinfinitytreal numberdQprojectiontreal number \( T= \int _{{-}\infty}^{\infty}{}t\,\mathrm{d}{Q}_{t} \).

Proof. What remains to be shown is that G(Bself-adjoint operator)=equalsG(Toperator) \( \mathop{\mathcal{G}}\mathopen{}\left( B\right)\mathclose{}= \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{} \). Take (tupleξvector, Bself-adjoint operator(ξvector))tupleelement ofG(Bself-adjoint operator) \( \mathopen{}\left(ξ, B\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( B\right)\mathclose{} \). Then by Lemma IV.42 we have (tupleξvector, Bself-adjoint operatorξvector)tuple=equalslimlimitτpositive real number+infinity (tupleEbounded linear mapτpositive real number(ξvector), Bself-adjoint operatorτpositive real number(ξvector))tuple =equalslimlimitτpositive real number+infinity (tupleEbounded linear mapτpositive real number(ξvector), Fbounded linear mapτpositive real number(ξvector))tuple =equalslimlimitτpositive real number+infinity (tupleEbounded linear mapτpositive real number(ξvector), Toperator(Ebounded linear mapτpositive real number(ξvector)))tuple element ofG(Toperator)¯=equalsG(Toperator) . \[ \mathopen{}\left(ξ, {B}_{ξ}\right)\mathclose{}= \lim_{τ\to{+}\infty}{} \mathopen{}\left({E}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, {B}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{} = \lim_{τ\to{+}\infty}{} \mathopen{}\left({E}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, {F}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{} = \lim_{τ\to{+}\infty}{} \mathopen{}\left({E}_{τ}\mathopen{}\left( ξ\right)\mathclose{}, T\mathopen{}\left( {E}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right)\mathclose{}\right)\mathclose{} \in \overline{\mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}}= \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{} \text{.} \] Hence G(Bself-adjoint operator)subsetG(Toperator) \( \mathop{\mathcal{G}}\mathopen{}\left( B\right)\mathclose{}\subseteq \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{} \). For the reverse inclusion, suppose (tupleηvector, Toperator(ηvector))tupleelement ofG(Toperator)G(Bself-adjoint operator) \( \mathopen{}\left(η, T\mathopen{}\left( η\right)\mathclose{}\right)\mathclose{}\in \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}\ominus \mathop{\mathcal{G}}\mathopen{}\left( B\right)\mathclose{} \). For ξvectorelement ofHHilbert spaceτpositive real number \( ξ\in {H}_{τ} \) we have 0zero=equalsηvector, ξvector+plusToperator(ηvector), Bself-adjoint operator(ξvector)=equalsηvector, ξvector+plusFbounded linear mapτpositive real number(ηvector), Bself-adjoint operatorτpositive real number(ξvector)=equalsηvector, (1one+plusBself-adjoint operatorτpositive real number2two)timesξvector . \[ 0= \mathopen{}\left\langle{}η, ξ\right\rangle\mathclose{}+\mathopen{}\left\langle{}T\mathopen{}\left( η\right)\mathclose{}, B\mathopen{}\left( ξ\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}η, ξ\right\rangle\mathclose{}+\mathopen{}\left\langle{}{F}_{τ}\mathopen{}\left( η\right)\mathclose{}, {B}_{τ}\mathopen{}\left( ξ\right)\mathclose{}\right\rangle\mathclose{}= \mathopen{}\left\langle{}η, \mathopen{}\left(1+{{B}_{τ}}^{2}\right)\mathclose{}ξ\right\rangle\mathclose{} \text{.} \] But Bself-adjoint operatorτpositive real number \( {B}_{τ} \) is a bounded self-adjoint operator for which Bself-adjoint operatorτpositive real numbertimesHHilbert spaceτpositive real numbersubsetHHilbert spaceτpositive real number \( {B}_{τ}{H}_{τ}\subseteq {H}_{τ} \), whence it follows that the invertible operator 1one+plusBself-adjoint operatorτpositive real number2two \( 1+{{B}_{τ}}^{2} \) maps HHilbert spaceτpositive real number \( {H}_{τ} \) onto itself. Thus ηvector\( η \) is orthogonal to the dense subspace unionτpositive real number HHilbert spaceτpositive real number \( \bigcup_{τ}{} {H}_{τ} \), which makes ηvector=equals0zero \( η= 0 \).

As discussed earlier, we have for Toperator\( T \) a reasonably well-behaved functional calculus for continuous (complex-valued) functions on Rreal numbers\( \mathbb{R} \) which yields a densely defined operator fcontinuous function(Toperator) \( f\mathopen{}\left( T\right)\mathclose{} \) with Ddomain((fcontinuous function(Toperator))*)=equalsDdomain(fcontinuous function¯complex conjugate(Toperator)) \( \mathop{\mathcal{D}}\mathopen{}\left( \mathopen{}\left(f\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{}^{*}\right)\mathclose{}= \mathop{\mathcal{D}}\mathopen{}\left( \overline{f}\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{} \) for every such function fcontinuous function\( f \). Explicitly, in the ambient notation, fcontinuous function(Toperator)=equalsintegralinfinityinfinityfcontinuous function(treal number)dQprojectiontreal number , \[ f\mathopen{}\left( T\right)\mathclose{}= \int _{{-}\infty}^{\infty}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}{Q}_{t} \text{,} \] which means fcontinuous function(Toperator)timesξvector=equalslimlimitτpositive real number+infinity fcontinuous function(Toperator)τpositive real numbertimesξvector \( f\mathopen{}\left( T\right)\mathclose{}ξ= \lim_{τ\to{+}\infty}{} {f\mathopen{}\left( T\right)\mathclose{}}_{τ}ξ \) for ξvectorelement ofDdomain(fcontinuous function(Toperator)) \( ξ\in \mathop{\mathcal{D}}\mathopen{}\left( f\mathopen{}\left( T\right)\mathclose{}\right)\mathclose{} \), which is the set of all vectors for which the limit exists, where fcontinuous function(Toperator)τpositive real number=equalsintegralτpositive real numberτpositive real numberfcontinuous function(treal number)dQprojectiontreal number \( {f\mathopen{}\left( T\right)\mathclose{}}_{τ}= \int _{{-}τ}^{τ}{}f\mathopen{}\left( t\right)\mathclose{}\,\mathrm{d}{Q}_{t} \). Arithmetic with functions works as is should provided one restricts to the dense subspace unionτpositive real numberHHilbert spaceτpositive real number \( \bigcup_{τ}{}{H}_{τ} \), which is contained in the domain of every continuous function of Toperator\( T \). Ambiguities vanish when fcontinuous function\( f \) is bounded, which as we have seen makes fcontinuous function(Toperator) \( f\mathopen{}\left( T\right)\mathclose{} \) bounded, with norm at most supsupremumtreal numberelement ofRreal numbers|modulusfcontinuous function(treal number)|modulus \( \sup_{t\in \mathbb{R}}{}\mathopen{}\left\lvert{}f\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{} \). For bounded functions, we have (fcontinuous function(gcontinuous function))(Toperator)=equalsfcontinuous function(Toperator)timesgcontinuous function(Toperator) \( \mathopen{}\left(f\mathopen{}\left( g\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( T\right)\mathclose{}= f\mathopen{}\left( T\right)\mathclose{}g\mathopen{}\left( T\right)\mathclose{} \), (fcontinuous function+plusgcontinuous function)(Toperator)=equalsfcontinuous function(Toperator)+plusgcontinuous function(Toperator) \( \mathopen{}\left(f+g\right)\mathclose{}\mathopen{}\left( T\right)\mathclose{}= f\mathopen{}\left( T\right)\mathclose{}+g\mathopen{}\left( T\right)\mathclose{} \) and fcontinuous function¯complex conjugate(Toperator)=equalsfcontinuous function(Toperator)* \( \overline{f}\mathopen{}\left( T\right)\mathclose{}= f\mathopen{}\left( T\right)\mathclose{}^{*} \).

In particular, we can form the bounded operator eEuler's constantiimaginary unittimesToperator \( {\mathrm{e}}^{\mathrm{i}T} \), defined as expexponential(iimaginary unittimesToperator) \( \exp\mathopen{}\left( \mathrm{i}T\right)\mathclose{} \). Its adjoint eEuler's constantiimaginary unitToperator \( {\mathrm{e}}^{{-}\mathrm{i}T} \) is also its inverse, that is, eEuler's constantiimaginary unittimesToperator \( {\mathrm{e}}^{\mathrm{i}T} \) is unitary. Parlay this into a unitary representation treal numberis mapped toUunitary operatortreal number \( t\mapsto {U}_{t} \) of Rreal numbers\( \mathbb{R} \) on Toperator\( T \) by setting Uunitary operatortreal number=equalseEuler's constantiimaginary unittreal numberToperator \( {U}_{t}= {\mathrm{e}}^{{-}\mathrm{i}tT} \) for real treal number\( t \). These unitary operators obey Uunitary operatortreal number=equalsUunitary operatortreal number* \( {U}_{{-}t}= {U}_{t}^{*} \) and Uunitary operatorsreal number+plustreal number=equalsUunitary operatorsreal numbertimesUunitary operatortreal number \( {U}_{s+t}= {U}_{s}{U}_{t} \). It is not hard to check that the representation is strongly continuous in the sense that limlimittreal number0zeroUunitary operatortreal numbertimesξvector=equalsξvector \( \lim_{t\to0}{}{U}_{t}ξ= ξ \) for all ξvectorelement ofToperator \( ξ\in T \). A famous theorem of M. Stone asserts that every strongly continuous unitary representation of Rreal numbers\( \mathbb{R} \) on Toperator\( T \) arises in this way.

We conclude with a look at how these notions play out in quantum mechanics. In the classical framework, the states of a mechanical system with dmetric\( d \) degrees of freedom are vectors in Rreal numbersdmetric \( {\mathbb{R}}^{d} \). To keep track of a quantum mechanical system, we must move to the Hilbert space HHilbert space=equalsL2Lebesgue space(Rreal numbersdmetric) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( {\mathbb{R}}^{d}\right)\mathclose{} \). The state of the system is described by a unit vector ψunit vector\( ψ \) in HHilbert space\( H \), which imposes the probability density |modulusψunit vector|modulus2two \( {\mathopen{}\left\lvert{}ψ\right\rvert\mathclose{}}^{2} \) on Rreal numbersdmetric \( {\mathbb{R}}^{d} \). The observables of the system (things that we can imagine measuring in a way that yields a real number at each observation, but in a random way governed by |modulusψunit vector|modulus2two \( {\mathopen{}\left\lvert{}ψ\right\rvert\mathclose{}}^{2} \)) are bounded self-adjoint operators on HHilbert space\( H \). For an observable Aself-adjoint operator\( A \), the expected value of Aself-adjoint operator\( A \) when the system is in the state ψunit vector\( ψ \) is Aself-adjoint operator(ψunit vector), ψunit vector \( \mathopen{}\left\langle{}A\mathopen{}\left( ψ\right)\mathclose{}, ψ\right\rangle\mathclose{} \). Evolution of the system over time is determined by a self-adjoint operator Bself-adjoint operator\( B \) called the Hamiltonian, which is unbounded in almost all cases of interest. The way Bself-adjoint operator\( B \) moves the system is by the unitary representation Uunitary operatortreal number=equalseEuler's constantiimaginary unittreal numberBself-adjoint operator \( {U}_{t}= {\mathrm{e}}^{{-}\mathrm{i}tB} \). From one point of view, the state ψunit vector\( ψ \) remains fixed, while the observable Aself-adjoint operator\( A \) at time 0zero\( 0 \) becomes Uunitary operatortreal number*timesAself-adjoint operatortimesUunitary operatortreal number \( {U}_{t} ^{*}A{U}_{t} \) at time treal number\( t \). The expected value of Aself-adjoint operator\( A \) at time treal number\( t \) in the state ψunit vector\( ψ \) is then Uunitary operatortreal number*timesAself-adjoint operatortimesUunitary operatortreal numbertimesξvector, ξvector \( \mathopen{}\left\langle{} {U}_{t} ^{*}A{U}_{t}ξ, ξ\right\rangle\mathclose{} \). This is of course the same as Aself-adjoint operatortimesUunitary operatortreal numbertimesξvector, Uunitary operatortreal numbertimesξvector \( \mathopen{}\left\langle{}A{U}_{t}ξ, {U}_{t}ξ\right\rangle\mathclose{} \), so in terms of what can usefully be measured in the laboratory, we can equally well regard Aself-adjoint operator\( A \) as fixed and the state moving from ψunit vector0zero \( {ψ}_{0} \) at time 0zero\( 0 \) to ψunit vectortreal number=equalsUunitary operatortreal numbertimesψunit vector0zero \( {ψ}_{t}= {U}_{t}{ψ}_{0} \) at time treal number\( t \). This means ψunit vector=equalsψunit vector(xvectortreal number)=equalsψunit vectortreal number(xvector)=equalsexpexponential(iimaginary unittimestreal numbertimesToperator)timesψunit vector0zero \( ψ= ψ\mathopen{}\left( \mathbf{x}, t\right)\mathclose{}= {ψ}_{t}\mathopen{}\left( \mathbf{x}\right)\mathclose{}= \exp\mathopen{}\left( {-}\mathrm{i}tT\right)\mathclose{}{ψ}_{0} \), so treal numberpartial derivative with respect to t (ψunit vector(xvectortreal number))=equalsiimaginary unittimesBself-adjoint operatortimesexpexponential(iimaginary unittimestreal numbertimesBself-adjoint operator)timesψunit vector0zero=equalsiimaginary unittimesBself-adjoint operatortimesψunit vector(xvectortreal number) \( \frac{\partial }{\partial t}\mathopen{}\left( ψ\mathopen{}\left( \mathbf{x}, t\right)\mathclose{}\right)\mathclose{}= {-}\mathrm{i}B\exp\mathopen{}\left( {-}\mathrm{i}tB\right)\mathclose{}{ψ}_{0}= {-}\mathrm{i}Bψ\mathopen{}\left( \mathbf{x}, t\right)\mathclose{} \). This is Schrödinger's equation: iimaginary unittimesψunit vectortreal numberpartial derivative of ψ with respect to t =equalsBself-adjoint operatortimesψunit vector \( \mathrm{i}\frac{\partial ψ}{\partial t}= Bψ \).

To go beyond mere epistemology, one has to grab hold of physically meaningful Hamiltonians—which would, as they say, take us beyond the scope of this course.


Previous: The Spectral Theorem back to top Next: Additional Exercises