Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

F. Hilbert-Schmidt Operators

Definition III.44

An operator Tlinear map\( T \) is said to be Hilbert-Schmidt if there exists an orthonormal basis (sequenceeunit vectorninteger)sequence \( \mathopen{}\left({e}_{n}\right)\mathclose{} \) for HHilbert space\( H \) such that summationninteger Tlinear map(eunit vectorninteger) 2two <less thaninfinity . \[ \sum_{n}{} {\mathopen{}\left\lVert{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} \lt \infty \text{.} \] Denote by ℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \) the set of all Hilbert-Schmidt operators on HHilbert space\( H \).

Remark III.45

  1. Tlinear map\( T \) is Hilbert-Schmidt if and only if Tlinear map*(Tlinear map)=equals|modulusTlinear map|modulus2twoelement of𝒯trace-class operators(HHilbert space) \( T^{*}\mathopen{}\left( T\right)\mathclose{}= {\mathopen{}\left\lvert{}T\right\rvert\mathclose{}}^{2}\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \) since summationninteger Tlinear map(eunit vectorninteger) 2two =equalssummationninteger Tlinear map(eunit vectorninteger), Tlinear map(eunit vectorninteger) =equalssummationninteger Tlinear map*(Tlinear map(eunit vectorninteger)), eunit vectorninteger . \[ \sum_{n}{} {\mathopen{}\left\lVert{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} = \sum_{n}{} \mathopen{}\left\langle{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}, T\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rangle\mathclose{} = \sum_{n}{} \mathopen{}\left\langle{} T^{*}\mathopen{}\left( T\mathopen{}\left( {e}_{n}\right)\mathclose{}\right)\mathclose{}, {e}_{n}\right\rangle\mathclose{} \text{.} \]
  2. It follows from above and Proposition III.29 that ℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \) is an ideal of bounded linear operators(HHilbert space) \( \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \).
  3. Tlinear mapelement ofℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( T\in \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \) implies summation Tlinear map(forthonormal basisninteger) 2two <less thaninfinity \( \sum{} {\mathopen{}\left\lVert{}T\mathopen{}\left( {f}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} \lt \infty \) for any orthonormal basis (sequenceforthonormal basisninteger)sequence \( \mathopen{}\left({f}_{n}\right)\mathclose{} \) of HHilbert space\( H \).

Proposition III.46

𝒯trace-class operators(HHilbert space)subsetℋ𝒮Hilbert-Schmidt operators(HHilbert space)subset𝒦compact linear operators(HHilbert space) \( \mathcal{T}\mathopen{}\left( H\right)\mathclose{}\subseteq \mathcal{HS}\mathopen{}\left( H\right)\mathclose{}\subseteq \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \).

Proof. Tlinear mapelement of𝒯trace-class operators(HHilbert space) \( T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \) implies Tlinear map*timesTlinear mapelement of𝒯trace-class operators(HHilbert space) \( T^{*}T\in \mathcal{T}\mathopen{}\left( H\right)\mathclose{} \), which gives Tlinear mapelement ofℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( T\in \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \). Then |modulusTlinear map|modulus2twoelement of𝒦compact linear operators(HHilbert space) \( {\mathopen{}\left\lvert{}T\right\rvert\mathclose{}}^{2}\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \), which implies |modulusTlinear map|moduluselement of𝒦compact linear operators(HHilbert space) \( \mathopen{}\left\lvert{}T\right\rvert\mathclose{}\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \) as an easy consequence of the spectral theorem for compact self-adjoint operators. Now polarize to get Tlinear map=equalsVpartial isometrytimes|modulusTlinear map|modulus \( T= V\mathopen{}\left\lvert{}T\right\rvert\mathclose{} \) for some Vpartial isometryelement ofbounded linear operators(HHilbert space) \( V\in \mathcal{L}\mathopen{}\left( H\right)\mathclose{} \). Therefore, Tlinear mapelement of𝒦compact linear operators(HHilbert space) \( T\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \).

As expected, not all compact operators are Hilbert-Schmidt. An instance of this is the diagonal operator Ddiagonal operator\( D \) on HHilbert space\( H \) given in terms of an orthonormal basis (sequenceeunit vectorninteger)sequence \( \mathopen{}\left({e}_{n}\right)\mathclose{} \) by Ddiagonal operator(eunit vectorninteger)=equals1onenintegertimeseunit vectorninteger \( D\mathopen{}\left( {e}_{n}\right)\mathclose{}= \frac{1}{\sqrt{n}}{e}_{n} \), since summation Ddiagonal operator(eunit vectorninteger) 2two =equalssummation |modulus1oneninteger|modulus 2two times eunit vectorninteger 2two =equalssummation 1oneninteger =equalsinfinity . \[ \sum{} {\mathopen{}\left\lVert{}D\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} = \sum{} {\mathopen{}\left\lvert{}\frac{1}{\sqrt{n}}\right\rvert\mathclose{}}^{2}{\mathopen{}\left\lVert{}{e}_{n}\right\rVert\mathclose{}}^{2} = \sum{} \frac{1}{n} = \infty \text{.} \] Hence Ddiagonal operator\( D \) is not Hilbert-Schmidt but is compact since 1onenintegerconverges to0zero \( \frac{1}{\sqrt{n}} \to 0 \).

Example III.47

Here is a rich source of examples of Hilbert-Schmidt operators. Let Xmeasure space\( X \) be a measure space with measure μmeasure\( μ \). (Let us assume, for convenience, that HHilbert space=equalsL2Lebesgue space(Xmeasure space) \( H= \mathrm{L}^{\mathrm{2}}\mathopen{}\left( X\right)\mathclose{} \) is separable.) Fix kfunctionelement ofL2Lebesgue space(Xmeasure space×Cartesian productXmeasure spaceμmeasure×Cartesian productμmeasure) \( k\in \mathrm{L}^{\mathrm{2}}\mathopen{}\left( X\times X, μ\times μ\right)\mathclose{} \). Think kfunction=equalskfunction(tvariablesvariable) \( k= k\mathopen{}\left( t, s\right)\mathclose{} \). For tvariableelement ofXmeasure space \( t\in X \), define the slice kfunctiontvariable \( {k}_{t} \) of kfunction\( k \) by kfunctiontvariable(svariable)=equalskfunction(tvariablesvariable) \( {k}_{t}\mathopen{}\left( s\right)\mathclose{}= k\mathopen{}\left( t, s\right)\mathclose{} \). Then by Fubini's theorem each kfunctiontvariableelement ofHHilbert space \( {k}_{t}\in H \) for almost every tvariable\( t \) and integralXmeasure space kfunctiontvariable 2two dμmeasure(tvariable)=equalsintegralXmeasure space×Cartesian productXmeasure space |moduluskfunction|modulus2two d (μmeasure×Cartesian productμmeasure) <less thaninfinity . \[ \int _{X}{} {\mathopen{}\left\lVert{}{k}_{t}\right\rVert\mathclose{}}^{2} \,\mathrm{d}μ\mathopen{}\left( t\right)\mathclose{}= \int _{X\times X}{} {\mathopen{}\left\lvert{}k\right\rvert\mathclose{}}^{2} \,\mathrm{d} \mathopen{}\left(μ\times μ\right)\mathclose{} \lt \infty \text{.} \] For ffunctionelement ofHHilbert space \( f\in H \), define the function KHilbert-Schmidt operator(ffunction) \( K\mathopen{}\left( f\right)\mathclose{} \) almost everywhere by (KHilbert-Schmidt operator(ffunction))(tvariable)=equalsintegralXmeasure space kfunction(tvariablesvariable)timesffunction(svariable) dμmeasure(svariable)=equalsffunction, kfunctiontvariable¯complex conjugate . \[ \mathopen{}\left(K\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{}= \int _{X}{} k\mathopen{}\left( t, s\right)\mathclose{}f\mathopen{}\left( s\right)\mathclose{} \,\mathrm{d}μ\mathopen{}\left( s\right)\mathclose{}= \mathopen{}\left\langle{}f, \overline{{k}_{t}}\right\rangle\mathclose{} \text{.} \] Then KHilbert-Schmidt operator(ffunction) \( K\mathopen{}\left( f\right)\mathclose{} \) is measurable (by Fubini). Further, integralXmeasure space |modulus(KHilbert-Schmidt operator(ffunction))(tvariable)|modulus 2two less than or equal tointegralXmeasure space ffunction2twotimes |moduluskfunctiontvariable¯complex conjugate|modulus 2two dμmeasure(tvariable)=equalsffunction2twotimesintegralXmeasure space×Cartesian productXmeasure space |moduluskfunction|modulus2two d (μmeasure×Cartesian productμmeasure) , \[ \int _{X}{} {\mathopen{}\left\lvert{}\mathopen{}\left(K\mathopen{}\left( f\right)\mathclose{}\right)\mathclose{}\mathopen{}\left( t\right)\mathclose{}\right\rvert\mathclose{}}^{2} \leq \int _{X}{} {\mathopen{}\left\lVert{}f\right\rVert\mathclose{}}^{2}{\mathopen{}\left\lvert{}\overline{{k}_{t}}\right\rvert\mathclose{}}^{2} \,\mathrm{d}μ\mathopen{}\left( t\right)\mathclose{}= {\mathopen{}\left\lVert{}f\right\rVert\mathclose{}}^{2}\int _{X\times X}{} {\mathopen{}\left\lvert{}k\right\rvert\mathclose{}}^{2} \,\mathrm{d} \mathopen{}\left(μ\times μ\right)\mathclose{} \text{,} \] so KHilbert-Schmidt operator\( K \) maps HHilbert space\( H \) boundedly into itself, with KHilbert-Schmidt operatorless than or equal tokfunctionL2Lebesgue space(Xmeasure space×Cartesian productXmeasure space) \( \mathopen{}\left\lVert{}K\right\rVert\mathclose{}\leq \mathopen{}\left\lVert{}k\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}\mathopen{}\left( X\times X\right)\mathclose{}} \). Let {seteunit vector1oneeunit vector2two}set \( \mathopen{}\left\{\, {e}_{1}, {e}_{2}, \dotsc\,\right\}\mathclose{} \) be an orthonormal basis for HHilbert space\( H \). Then by the calculations above summationninteger KHilbert-Schmidt operator(eunit vectorninteger) 2two =equalssummationninteger integralXmeasure space |moduluseunit vectorninteger, kfunctiontvariable¯complex conjugate|modulus 2two dμmeasure(tvariable) =equalsintegralXmeasure space summationninteger |moduluseunit vectorninteger, kfunctiontvariable¯complex conjugate|modulus 2two dμmeasure(tvariable)=equalsintegralXmeasure space kfunctiontvariable2two dμmeasure(tvariable)=equals (kfunctionL2Lebesgue space(Xmeasure space×Cartesian productXmeasure space)) 2two . \[ \sum_{n}{} {\mathopen{}\left\lVert{}K\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} = \sum_{n}{} \int _{X}{} {\mathopen{}\left\lvert{}\mathopen{}\left\langle{}{e}_{n}, \overline{{k}_{t}}\right\rangle\mathclose{}\right\rvert\mathclose{}}^{2} \,\mathrm{d}μ\mathopen{}\left( t\right)\mathclose{} = \int _{X}{} \sum_{n}{} {\mathopen{}\left\lvert{}\mathopen{}\left\langle{}{e}_{n}, \overline{{k}_{t}}\right\rangle\mathclose{}\right\rvert\mathclose{}}^{2} \,\mathrm{d}μ\mathopen{}\left( t\right)\mathclose{}= \int _{X}{} {\mathopen{}\left\lVert{}{k}_{t}\right\rVert\mathclose{}}^{2} \,\mathrm{d}μ\mathopen{}\left( t\right)\mathclose{}= {\mathopen{}\left(\mathopen{}\left\lVert{}k\right\rVert\mathclose{}_{\mathrm{L}^{\mathrm{2}}\mathopen{}\left( X\times X\right)\mathclose{}}\right)\mathclose{}}^{2} \text{.} \] Thus KHilbert-Schmidt operator\( K \) is a Hilbert-Schmidt operator on HHilbert space\( H \), and its Hilbert-Schmidt norm (to be defined shortly) coincides with the L2Lebesgue space \( \mathrm{L}^{\mathrm{2}} \) norm of the kernel function kfunction\( k \).

We return to the general discussion of Hilbert-Schmidt operators. Let (sequenceeunit vectorninteger)sequence \( \mathopen{}\left({e}_{n}\right)\mathclose{} \) be an orthonormal basis for HHilbert space\( H \).

Definition III.48

For SHilbert-Schmidt operator1one \( {S}_{1} \) and SHilbert-Schmidt operator2two \( {S}_{2} \) in ℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \), define SHilbert-Schmidt operator1one, SHilbert-Schmidt operator2twoℋ𝒮Hilbert-Schmidt operators=equalssummation SHilbert-Schmidt operator1one(eunit vectorninteger), SHilbert-Schmidt operator2two(eunit vectorninteger) =equalsTrtrace(SHilbert-Schmidt operator2two*timesSHilbert-Schmidt operator1one) . \[ \mathopen{}\left\langle{}{S}_{1}, {S}_{2}\right\rangle\mathclose{}_{\mathcal{HS}}= \sum{} \mathopen{}\left\langle{}{S}_{1}\mathopen{}\left( {e}_{n}\right)\mathclose{}, {S}_{2}\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rangle\mathclose{} = \operatorname{Tr}\mathopen{}\left( {S}_{2}^{*}{S}_{1}\right)\mathclose{} \text{.} \]

This is an inner product. The algebraic properties are obvious, and SHilbert-Schmidt operator, SHilbert-Schmidt operatorℋ𝒮Hilbert-Schmidt operators=equals0zero \( \mathopen{}\left\langle{}S, S\right\rangle\mathclose{}_{\mathcal{HS}}= 0 \) implies SHilbert-Schmidt operator(eunit vectorninteger)=equals0zero \( S\mathopen{}\left( {e}_{n}\right)\mathclose{}= 0 \) for all ninteger\( n \) implies SHilbert-Schmidt operator=equals0zero \( S= 0 \). We define the Hilbert-Schmidt norm on ℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \) by SHilbert-Schmidt operatorℋ𝒮Hilbert-Schmidt operators=equals (SHilbert-Schmidt operator, SHilbert-Schmidt operatorℋ𝒮Hilbert-Schmidt operators) 1one2two \( \mathopen{}\left\lVert{}S\right\rVert\mathclose{}_{\mathcal{HS}}= {\mathopen{}\left(\mathopen{}\left\langle{}S, S\right\rangle\mathclose{}_{\mathcal{HS}}\right)\mathclose{}}^{\frac{1}{2}} \).

It is routine to show that the series defining the inner product converges absolutely. How does this norm relate to the regular old operator norm? Ssetℋ𝒮Hilbert-Schmidt operators 2two =equalssummationninteger Sset(eunit vectorninteger) 2two greater than or equal to Sset(eunit vectoriinteger) 2two \[ {\mathopen{}\left\lVert{}S\right\rVert\mathclose{}_{\mathcal{HS}}}^{2}= \sum_{n}{} {\mathopen{}\left\lVert{}S\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} \geq {\mathopen{}\left\lVert{}S\mathopen{}\left( {e}_{i}\right)\mathclose{}\right\rVert\mathclose{}}^{2} \] implies Ssetℋ𝒮Hilbert-Schmidt operatorsgreater than or equal toSset . \[ \mathopen{}\left\lVert{}S\right\rVert\mathclose{}_{\mathcal{HS}}\geq \mathopen{}\left\lVert{}S\right\rVert\mathclose{} \text{.} \]

Lastly, we want to show that this normed linear space of Hilbert-Schmidt operators on HHilbert space\( H \) is complete.

Proposition III.49

ℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \) with ·ℋ𝒮Hilbert-Schmidt operators \( \mathopen{}\left\lVert{}\cdot\right\rVert\mathclose{}_{\mathcal{HS}} \) is complete (that is, a Hilbert space).

Proof. Take a Cauchy sequence of Hilbert-Schmidt operators (sequenceTHilbert-Schmidt operatorninteger)sequencesubsetℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( \mathopen{}\left({T}_{n}\right)\mathclose{}\subseteq \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \). Then since THilbert-Schmidt operatorninteger-minusTHilbert-Schmidt operatormintegerℋ𝒮Hilbert-Schmidt operatorsgreater than or equal toTHilbert-Schmidt operatorninteger-minusTHilbert-Schmidt operatorminteger \( \mathopen{}\left\lVert{}{T}_{n}-{T}_{m}\right\rVert\mathclose{}_{\mathcal{HS}}\geq \mathopen{}\left\lVert{}{T}_{n}-{T}_{m}\right\rVert\mathclose{} \), we have a Cauchy sequence in the regular operator norm which converges to some THilbert-Schmidt operatorelement of𝒦compact linear operators(HHilbert space) \( T\in \mathcal{K}\mathopen{}\left( H\right)\mathclose{} \) ( THilbert-Schmidt operatorminteger-minusTHilbert-Schmidt operatorconverges to0zero \( \mathopen{}\left\lVert{}{T}_{m}-T\right\rVert\mathclose{} \to 0 \)). Then using Fatou and the fact that a Cauchy sequence is bounded, summation THilbert-Schmidt operator(eunit vectorninteger) 2two =equalssummationninteger limlimitminteger THilbert-Schmidt operatorminteger(eunit vectorninteger) 2two less than or equal tolim inflimit infimumminteger summation THilbert-Schmidt operatorminteger(eunit vectorninteger) 2two =equalslim inflimit infimumminteger (THilbert-Schmidt operatormintegerℋ𝒮Hilbert-Schmidt operators) 2two <less thaninfinity . \[ \sum{} {\mathopen{}\left\lVert{}T\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} = \sum_{n}{} \lim_{m}{} {\mathopen{}\left\lVert{}{T}_{m}\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} \leq \liminf_{m}{} \sum{} {\mathopen{}\left\lVert{}{T}_{m}\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} = \liminf_{m}{} {\mathopen{}\left(\mathopen{}\left\lVert{}{T}_{m}\right\rVert\mathclose{}_{\mathcal{HS}}\right)\mathclose{}}^{2} \lt \infty \text{.} \] Thus we have THilbert-Schmidt operatorelement ofℋ𝒮Hilbert-Schmidt operators(HHilbert space) \( T\in \mathcal{HS}\mathopen{}\left( H\right)\mathclose{} \). Finally, THilbert-Schmidt operatorminteger-minusTHilbert-Schmidt operatorℋ𝒮Hilbert-Schmidt operators 2two =equalssummationninteger (THilbert-Schmidt operatorminteger-minusTHilbert-Schmidt operator)(eunit vectorninteger) 2two =equalssummationninteger limlimitkinteger (THilbert-Schmidt operatorminteger-minusTHilbert-Schmidt operatorkinteger)(eunit vectorninteger) 2two less than or equal tolim inflimit infimumkinteger summationninteger (THilbert-Schmidt operatorminteger-minusTHilbert-Schmidt operatorkinteger)(eunit vectorninteger) 2two =equalslim inflimit infimumkinteger (THilbert-Schmidt operatorminteger-minusTHilbert-Schmidt operatorkintegerℋ𝒮Hilbert-Schmidt operators) 2two converges to0zero \[ {\mathopen{}\left\lVert{}{T}_{m}-T\right\rVert\mathclose{}_{\mathcal{HS}}}^{2}= \sum_{n}{} {\mathopen{}\left\lVert{}\mathopen{}\left({T}_{m}-T\right)\mathclose{}\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} = \sum_{n}{} \lim_{k}{} {\mathopen{}\left\lVert{}\mathopen{}\left({T}_{m}-{T}_{k}\right)\mathclose{}\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} \leq \liminf_{k}{} \sum_{n}{} {\mathopen{}\left\lVert{}\mathopen{}\left({T}_{m}-{T}_{k}\right)\mathclose{}\mathopen{}\left( {e}_{n}\right)\mathclose{}\right\rVert\mathclose{}}^{2} = \liminf_{k}{} {\mathopen{}\left(\mathopen{}\left\lVert{}{T}_{m}-{T}_{k}\right\rVert\mathclose{}_{\mathcal{HS}}\right)\mathclose{}}^{2} \to 0 \] as mintegerconverges toinfinity \( m \to \infty \).

Remark III.50

It turns out that ℋ𝒮Hilbert-Schmidt operators(HHilbert space)HHilbert spaceHHilbert space¯conjugate Hilbert space \( \mathcal{HS}\mathopen{}\left( H\right)\mathclose{}\simeq H\otimes \overline{H} \), where HHilbert space¯conjugate Hilbert space \( \overline{H} \) is HHilbert space\( H \) with conjugate scalar multiplication.


Previous: Integral Operators back to top Next: Operators and Differential Equations