Lecture Notes in Functional Analysis

by William L. Paschke

edition 0.9

image/svg+xml

Contents

Frontmatter

I. Hilbert Space

II. Bounded Operators

III. Compact Operators

IV. The Spectral Theorem

Index and References

A. Two Basic Theorems

Theorem II.14 (Baire's Theorem)

Let Xcomplete metric space\( X \) be a complete metric space.

  1. If (sequenceUopen dense subsetninteger)sequenceninteger=1oneinfinity \( \mathopen{}\left({U}_{n}\right)\mathclose{}_{n=1}^{\infty} \) is a sequence of open dense subsets of Xcomplete metric space\( X \), then intersectionninteger=1oneinfinityUopen dense subsetninteger \( \bigcap_{n=1}^{\infty}{}{U}_{n} \) is dense in Xcomplete metric space\( X \).
  2. Xcomplete metric space\( X \) is not a countable union of nowhere-dense sets.

More simply, if Xnormed linear space\( X \) is the union of countably many sets, when we close them, at least one of the closures contains an open set.

Definition II.15

Let Xtopological space\( X \) and Ytopological space\( Y \) be topological spaces. A map ffunction:mapsXtopological spacetoYtopological space \( f : X \to Y \) is open if ffunction(U) \( f\mathopen{}\left( U\right)\mathclose{} \) is open in Ytopological space\( Y \) whenever U\( U \) is open in Xtopological space\( X \).

Remark II.16

If Xnormed linear space\( X \) and Ynormed linear space\( Y \) are normed linear spaces and ffunction\( f \) is linear, then ffunction\( f \) commutes with translations and dilations, so ffunction\( f \) is open if and only if ffunction(BballXnormed linear space(1one)) \( f\mathopen{}\left( \mathrm{B}_{X}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} \) contains a ball centered at 0zero\( 0 \) in Ynormed linear space\( Y \), where BballXnormed linear space(1one) \( \mathrm{B}_{X}\mathopen{}\left( 1\right)\mathclose{} \) is the unit ball in Xnormed linear space\( X \).

Theorem II.17 (Open Mapping Theorem)

Let XBanach space\( X \) and YBanach space\( Y \) be Banach Spaces. If an operator Tlinear mapelement ofbounded linear operators(XBanach spaceYBanach space) \( T\in \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \) is surjective, then Tlinear map\( T \) is open.

Proof. Let BballXBanach space(rreal number,xvector0zero) \( \mathrm{B}_{X}\mathopen{}\left( r, {x}_{0}\right)\mathclose{} \) denote the open ball of radius rreal number\( r \) around xvector0zero \( {x}_{0} \) in XBanach space\( X \), and likewise for balls in YBanach space\( Y \). Write Bball(rreal number)=equalsBballXBanach space(rreal number,0zero) \( \mathrm{B}\mathopen{}\left( r\right)\mathclose{}= \mathrm{B}_{X}\mathopen{}\left( r, 0\right)\mathclose{} \). It will suffice to show that Tlinear map(Bball(1one)) \( T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} \) contains a ball about 0zero\( 0 \) in YBanach space\( Y \). Since XBanach space=equalsunionninteger=1oneinfinity Bball(ninteger) \( X= \bigcup_{n=1}^{\infty}{} \mathrm{B}\mathopen{}\left( n\right)\mathclose{} \) and Tlinear map\( T \) is surjective, we have that YBanach space=equalsunionninteger=1oneinfinity Tlinear map(Bball(ninteger)) \( Y= \bigcup_{n=1}^{\infty}{} T\mathopen{}\left( \mathrm{B}\mathopen{}\left( n\right)\mathclose{}\right)\mathclose{} \). The map yvectoris mapped tonintegertimesyvector \( y\mapsto ny \) is a homeomorphism of YBanach space\( Y \) that maps Tlinear map(Bball(1one)) \( T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} \) to Tlinear map(Bball(ninteger)) \( T\mathopen{}\left( \mathrm{B}\mathopen{}\left( n\right)\mathclose{}\right)\mathclose{} \), so it follows from Baire's Theorem that Tlinear map(Bball(1one)) ¯ \( \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} } \) contains an open ball about 0zero\( 0 \). Thus there exists yvector0zeroelement ofYBanach space \( {y}_{0}\in Y \) and an rreal number>greater than0zero \( r\gt 0 \) such that BballYBanach space(4fourtimesrreal number,yvector0zero)subset Tlinear map(Bball(1one)) ¯ \( \mathrm{B}_{Y}\mathopen{}\left( 4r, {y}_{0}\right)\mathclose{}\subseteq \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} } \). Now pick yvector1one=equalsTlinear map(xvector) \( {y}_{1}= T\mathopen{}\left( x\right)\mathclose{} \) with xvectorelement ofBball(1one) \( x\in \mathrm{B}\mathopen{}\left( 1\right)\mathclose{} \) such that yvector1one-minusyvector0zero<less than2twotimesrreal number \( \mathopen{}\left\lVert{}{y}_{1}-{y}_{0}\right\rVert\mathclose{}\lt 2r \). Then BballYBanach space(2twotimesrreal number,yvector1one)subsetBballYBanach space(4fourtimesrreal number,yvector0zero)subset Tlinear map(Bball(1one)) ¯ \( \mathrm{B}_{Y}\mathopen{}\left( 2r, {y}_{1}\right)\mathclose{}\subseteq \mathrm{B}_{Y}\mathopen{}\left( 4r, {y}_{0}\right)\mathclose{}\subseteq \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} } \). If yvector<less than2twotimesrreal number \( \mathopen{}\left\lVert{}y\right\rVert\mathclose{}\lt 2r \), then yvector1one-minusyvectorelement ofBballYBanach space(2twotimesrreal number,yvector1one)subsetBballYBanach space(4fourtimesrreal number,yvector0zero)subset Tlinear map(Bball(1one)) ¯ \( {y}_{1}-y\in \mathrm{B}_{Y}\mathopen{}\left( 2r, {y}_{1}\right)\mathclose{}\subseteq \mathrm{B}_{Y}\mathopen{}\left( 4r, {y}_{0}\right)\mathclose{}\subseteq \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} } \), and hence yvector1one-minusyvectorelement of Tlinear map(Bball(1one)) ¯ \( {y}_{1}-y\in \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} } \). Then yvector=equalsyvector1one+plus(yvector-minusyvector1one)=equalsTlinear map(xvector)+plus(yvector-minusyvector1one)element ofTlinear map(xvector)+plus Tlinear map(Bball(1one)) ¯=equals Tlinear map((xvector1one+plusBball(1one))) ¯subset Tlinear map(Bball(2two)) ¯ \[ y= {y}_{1}+\mathopen{}\left(y-{y}_{1}\right)\mathclose{}= T\mathopen{}\left( x\right)\mathclose{}+\mathopen{}\left(y-{y}_{1}\right)\mathclose{}\in T\mathopen{}\left( x\right)\mathclose{}+\overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} }= \overline{ T\mathopen{}\left( \mathopen{}\left({x}_{1}+\mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{}\right)\mathclose{} }\subseteq \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 2\right)\mathclose{}\right)\mathclose{} } \]. So what we have is that BballYBanach space(2twotimesrreal number,0zero)subset Tlinear map(Bball(2two)) ¯ \( \mathrm{B}_{Y}\mathopen{}\left( 2r, 0\right)\mathclose{}\subseteq \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 2\right)\mathclose{}\right)\mathclose{} } \), and hence BballYBanach space(rreal number,0zero)subset Tlinear map(Bball(1one)) ¯ \( \mathrm{B}_{Y}\mathopen{}\left( r, 0\right)\mathclose{}\subseteq \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} } \).

We will conclude the proof by showing that BballYBanach space(rreal number2two,0zero)subset Tlinear map(Bball(1one)) ¯ \( \mathrm{B}_{Y}\mathopen{}\left( \frac{r}{2}, 0\right)\mathclose{}\subseteq \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} } \). Now, since Tlinear map\( T \) commutes with dilations, we have that yvector<less than2twonintegertimesrreal number \( \mathopen{}\left\lVert{}y\right\rVert\mathclose{}\lt {2}^{{-}n}r \) implies yvectorelement of Tlinear map(Bball( 2twoninteger )) ¯ \( y\in \overline{ T\mathopen{}\left( \mathrm{B}\mathopen{}\left( {2}^{{-}n} \right)\mathclose{}\right)\mathclose{} } \). Suppose that yvector<less thanrreal number2two \( \mathopen{}\left\lVert{}y\right\rVert\mathclose{}\lt \frac{r}{2} \). We can find xvector1oneelement ofBballXBanach space(1one2two,0zero) \( {x}_{1}\in \mathrm{B}_{X}\mathopen{}\left( \frac{1}{2}, 0\right)\mathclose{} \) such that yvector-minusTlinear map(xvector1one)<less thanrreal number4four \( \mathopen{}\left\lVert{}y-T\mathopen{}\left( {x}_{1}\right)\mathclose{}\right\rVert\mathclose{}\lt \frac{r}{4} \). By induction we get xvectornintegerelement ofBball( 2twoninteger ) \( {x}_{n}\in \mathrm{B}\mathopen{}\left( {2}^{{-}n} \right)\mathclose{} \) such that yvector-minussummationiinteger=1oneninteger Tlinear map(xvectoriinteger) <less thanrreal numbertimes 2two ninteger-minus1one \( \mathopen{}\left\lVert{}y-\sum_{i=1}^{n}{} T\mathopen{}\left( {x}_{i}\right)\mathclose{} \right\rVert\mathclose{}\lt r{2}^{{-}n-1} \). Since XBanach space\( X \) is complete the series summationninteger=1oneinfinity xvectorninteger \( \sum_{n=1}^{\infty}{} {x}_{n} \) converges in XBanach space\( X \). Call the sum svector\( s \). Then svector<less thansummationninteger=1oneinfinity 2twoninteger =equals1one \( \mathopen{}\left\lVert{}s\right\rVert\mathclose{}\lt \sum_{n=1}^{\infty}{} {2}^{{-}n} = 1 \) and yvector=equalsTlinear map(svector) \( y= T\mathopen{}\left( s\right)\mathclose{} \) (because Tlinear map\( T \) is bounded). Thus yvectorelement ofTlinear map(Bball(1one)) \( y\in T\mathopen{}\left( \mathrm{B}\mathopen{}\left( 1\right)\mathclose{}\right)\mathclose{} \) for all yvector\( y \) such that yvector<less thanrreal number2two \( \mathopen{}\left\lVert{}y\right\rVert\mathclose{}\lt \frac{r}{2} \).

Corollary II.18

If XBanach space\( X \) and YBanach space\( Y \) are Banach spaces and Tlinear map\( T \) in bounded linear operators(XBanach spaceYBanach space) \( \mathcal{L}\mathopen{}\left( X, Y\right)\mathclose{} \) is one-to-one and onto, then Tlinear map1inverse\( {T}^{-1} \) is bounded.

Remark II.19

If Xnormed linear space\( X \) and Ynormed linear space\( Y \) are normed linear spaces, we'll define the norm on Xnormed linear spaceYnormed linear space\( X\oplus Y \) by (xvector, yvector)=equalsxvector+plusyvector \( \mathopen{}\left\lVert{}\mathopen{}\left(x, y\right)\mathclose{}\right\rVert\mathclose{}= \mathopen{}\left\lVert{}x\right\rVert\mathclose{}+\mathopen{}\left\lVert{}y\right\rVert\mathclose{} \) (for now).

Definition II.20

The graph of a linear map Tlinear map:mapsXnormed linear spacetoYnormed linear space \( T : X \to Y \) between vector spaces is (of course) the subspace Ggraph(Tlinear map) \( \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{} \) of Xnormed linear spaceYnormed linear space \( X\oplus Y \) defined by G(Tlinear map)=equals{set(xvector, Tlinear map(xvector))|such thatxvectorelement ofXnormed linear space}set \( \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}= \mathopen{}\left\{\, \mathopen{}\left(x, T\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}\,\middle\vert\, x\in X\,\right\}\mathclose{} \).

When Xnormed linear space\( X \) and Ynormed linear space\( Y \) are normed linear spaces and Tlinear map\( T \) is bounded, it is straightforward to show that G(Tlinear map) \( \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{} \) is closed in Xnormed linear spaceYnormed linear space \( X\oplus Y \), normed as above (or in any fashion that makes the inclusions from Xnormed linear space\( X \) and Ynormed linear space\( Y \) to Xnormed linear spaceYnormed linear space\( X\oplus Y \) and the projections from Xnormed linear spaceYnormed linear space\( X\oplus Y \) onto Xnormed linear space\( X \) and Ynormed linear space\( Y \) continuous). For Banach spaces, the converse is true.

Theorem II.21 (Closed Graph Theorem)

If Tlinear map:mapsXnormed linear spacetoYnormed linear space \( T : X \to Y \) is a linear map between Banach spaces whose graph is closed, then Tlinear map\( T \) is bounded.

Proof. Define φfunction1oneelement ofbounded linear operators(G(Tlinear map)Xnormed linear space) \( {φ}_{1}\in \mathcal{L}\mathopen{}\left( \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}, X\right)\mathclose{} \) by φfunction1one(xvectorTlinear map(xvector))=equalsxvector \( {φ}_{1}\mathopen{}\left( x, T\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}= x \) and φfunction2twoelement ofbounded linear operators(G(Tlinear map)Ynormed linear space) \( {φ}_{2}\in \mathcal{L}\mathopen{}\left( \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{}, Y\right)\mathclose{} \) by φfunction2two(xvectorTlinear map(xvector))=equalsTlinear map(xvector) \( {φ}_{2}\mathopen{}\left( x, T\mathopen{}\left( x\right)\mathclose{}\right)\mathclose{}= T\mathopen{}\left( x\right)\mathclose{} \). It is easily seen that Xnormed linear spaceYnormed linear space\( X\oplus Y \) is complete, so our hypothesis makes G(Tlinear map) \( \mathop{\mathcal{G}}\mathopen{}\left( T\right)\mathclose{} \) complete. Notice that φfunction1one\( {φ}_{1} \) is bijective. By Corollary II.18, φfunction1one1inverse \( {φ}_{1}^{-1} \) is bounded. Thus φfunction2twocompositionφfunction1one1inverse=equalsTlinear map \( {φ}_{2}\circ {φ}_{1}^{-1}= T \) is bounded.


Previous: Bounded Operators back to top Next: Adjoints